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Abstract. Image classification is one of the most important areas in
computer vision. Hierarchical multi-label classification applies when a
multi-class image classification problem is arranged into smaller ones
based upon a hierarchy or taxonomy. Thus, hierarchical classification
modes generally provide multiple class predictions on each instance,
whereby these are expected to reflect the structure of image classes as
related to one another. In this paper, we propose a multi-label capsule
network (ML-CapsNet) for hierarchical classification. Our ML-CapsNet
predicts multiple image classes based on a hierarchical class-label tree
structure. To this end, we present a loss function that takes into account
the multi-label predictions of the network. As a result, the training app-
roach for our ML-CapsNet uses a coarse to fine paradigm while maintain-
ing consistency with the structure in the classification levels in the label-
hierarchy. We also perform experiments using widely available datasets
and compare the model with alternatives elsewhere in the literature. In
our experiments, our ML-CapsNet yields a margin of improvement with
respect to these alternative methods.

Keywords: Hierarchical image classification · Capsule networks ·
Deep learning

1 Introduction

Image classification is a classical problem in computer vision and machine learn-
ing where the aim is to recognise the image features so as to identify a target
image class. Image classification has found application in areas such as face recog-
nition [25], medical diagnosis [32], intelligent vehicles [26] and online advertising
[12] amongst others. Note that these classification tasks are often aimed at a
“flat” class-label set where all the classes are treated equally, devoid of a taxo-
nomical or hierarchical structure between them. This contrasts with hierarchical
classification tasks, which require multiple label predictions per instance. More-
over, these should be consistent with the hierarchical structure of the class-label
set under consideration.
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In this paper, we propose a multi-label image classification model (ML-
CapsNet) for hierarchical image classification based on capsule networks [20].
We note that capsule networks (CapsNets) can learn both, the image features
and their transformations. This allows for a natural means to recognition by
parts. Recall that capsule networks (CapsNets) use a set of neurons to obtain an
“activity vector”. These neurons are grouped in capsules, whereby deeper layers
account for several capsules at the preceding layer by agreement. Capsules were
originally proposed in [10] to learn a feature of instantiation parameters which
are robust to variations in position, orientation, scale and lighting. The assertion
that CapsNets can overcome viewpoint invariance problems was further explored
in [20], where the authors propose a dynamic routing procedure for routing by
agreement. Hinton et al. propose in [11] a probabilistic routing approach based
upon the EM-algorithm [4] so as to learn part-whole relationships. Building upon
the EM routing approach in [11], Bahadori [1] proposes a spectral method to
compute the capsule activation and pose.

It is not surprising that, due to their viewpoint invariance, their capacity to
address the “Picasso effect” in classifiers and their robustness to input perturba-
tions when compared to other CNNs of similar size [9], CapsNets have been the
focus of great interest in the computer vision and machine learning communities.
CapsNets have found applications in several computer vision tasks such as text
classification [2], 3D data processing [33], target recognition [18] and image classi-
fication [28]. They have also been used in architectures such as Siamese networks
[16], generative adversarial networks [23] and residual networks (ResNets) [13].

Despite the interest of the community in CapsNets, to our knowledge, they
have not been employed for hierarchical multi-label classification (HMC). Since
hierarchical multi-label classification can be viewed as a generalisation of multi-
class problems with subordinate, not exclusive classes, it is a challenging problem
in machine learning and pattern recognition that has attracted considerable
attention in the research community. It has been tackled in a number of ways,
spanning from kernel methods [19] to decision trees [24] and, more recently,
artificial neural networks [27]. Nonetheless this attention and the fact that image
HMC has been applied to the annotation of medical images [8], these methods
often do not focus on images, but rather on problems such as protein structure
prediction [24], data-dependent grouping [22] or text classification [15].

Further, image hierarchical multi-label classification methods are relatively
few elsewhere in the literature. This is even more surprising since it is expected
that incorporating hierarchies in the model would improve generalisation, partic-
ularly when the training data is limited. Image HMC methods often employ the
hierarchical semantic relationships of the target classes so as to improve visual
classification results, making use of the hierarchical information as a guide to
the classifier. Along these lines, word hierarchies have been applied to provide
consistency across multiple datasets [17], deliver a posterior confidence estimate
[3] and to optimise the accuracy-specificity trade-off in visual recognition [5]. In
[7], order-preserving embeddings are used to model label-to-label and image-to-
image hierarchical interactions. In [34], the authors propose a Branch-CNN (B-
CNN), a CNN architecture for hierarchical data organised as a tree. The B-CNN
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Fig. 1. Architecture of our multi-label capsule network. Our Network has multiple
secondary capsules, each of these corresponding to a class-hierarchy. The output of
these is used for class prediction and the reconstruction of the input image using the
decoder outputs as shown in the figure.

architecture is such that the model outputs multiple predictions ordered from
coarse to fine along concatenated convolutional layers. In [30], the authors propose
a hierarchical deep CNN (HD-CNN) that employs component-wise pre-training
with global fine-tuning making use of a multinomial logistic loss.

Here, we present a CapsNet for image HMC. Our choice of capsules is moti-
vated by their capacity to learn relational information, seeking to profit from
the capacity of CapsNets to model the semantic relationships of image features
for hierarchical classification. Since CapsNets were not originally proposed for
HMC tasks, we propose a modified loss function that considers the consistency
of the predicted label with that endowed by the hierarchy under consideration.
Further, our reconstruction loss is common to all the secondary capsule decoders,
making use of the combined predictions for the hierarchies and further imposing
consistency on the HMC classification task.

2 Hierarchical Multi-label Capsules

Our ML-CapsNet uses a capsule architecture to predict multiple classes based on
a hierarchical/taxonomical label tree. The overall architecture of ML-CapsNet is
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presented in Fig. 1. Note our ML-CapsNet has a feature extraction block aimed
at converting pixel intensities into local features that can be used as inputs for
the primary capsule network. In our architecture, the feature map is reshaped
accordingly to allow for the input features to be passed on to the primary capsule
network P, which is shared amongst all the secondary ones. These secondary
capsule networks, denoted Sn in the figure, correspond to the nth hierarchy in
the class-label set. Thus, each of the hierarchical levels, from coarse-to-fine, have
their own secondary capsule networks and, therefore, there are as many of these
as hierarchies. For simplicity, each of these secondary capsules sets contain Kn

capsules, where Kn corresponds to the number of classes in the hierarchy indexed
n. Note that, as shown in the figure, each of the secondary capsule networks
Sn has their own prediction layer Yn, which computes the class probabilities
using a logit function. Thus, the Yn layers provide predictions for the Kn classes
corresponding to the nth hierarchy class level.

It is also worth noting that, since CapsNets train making use of the recon-
struction loss, here we use an auxiliary decoder network to reconstruct the input
image. To this end, we make use of the activity vector delivered by the secondary
capsule networks Sn for each hierarchy. We do this by combining the decoder
outputs for each class-hierarchy into a final one via concatenation as shown in
Fig. 1. As a result, the overall loss function LT for our ML-CapsNet is a linear
combination of all prediction losses and the reconstruction loss defined as follows

LT = τLR + (1 − τ)
N∑

n=1

λnLn (1)

where n is the index for hierarchical level in the level tree, N is the total number
of levels, λn a weight that moderates the contribution of each class hierarchy to
the overall loss and τ is a scalar that controls the balance between the classifi-
cation loss Ln and the reconstruction one LR. In Eq. 1 the reconstruction loss is
given by the L-2 norm between the input instance x and the reconstructed one
x̂. Thus, the loss becomes

LR = ||x − x̂||22 (2)

For Ln we employ the hinge loss given by

Ln = Tnmax(0,m+ − ‖vk‖)2 + γ(1 − Tn)max(0, ‖vk‖ − m−)2 (3)

where Tn = 1 if and only if the class indexed k is present, m+, m− and γ are
hyper-parameters and vk is the output vector for the capsule for the kth class
under consideration.

3 Experiments

We have performed experiments making use of the MNIST [6], Fashion-MNIST
[29], CIFAR-10 and CIFAR-100 [14] datasets. We have also compared our results
with those yielded by the B-CNN approach proposed in [34] and used the Cap-
sNet in [20] as a baseline. Note that, nonetheless the CapsNet in [20] is not a
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hierarchical classification model, it does share with our approach the routing
procedure and the structure of the primary and secondary capsules.

3.1 Implementation Details and Datasets

We have implemented our ML-CapsNet on TensorFlow and, for all our exper-
iments, have used the Adam optimiser with TensorFlow’s default settings. For
all the experiments we use exponential decay to adjust the learning rate value
after every epoch, where the initial learning rate is set to 0.001 with a decay rate
of 0.995.

As mentioned earlier, our network has a common feature extraction block
and primary capsule P shared amongst the secondary capsules Sn. In our imple-
mentation, the feature extraction block is comprised by two convolutional layers
for the MNIST dataset and 5 convolutional layers for Fashion-MNIST, CIFAR-
10 and CIFAR-100 datasets. We do this based on the complexity of the dataset
so that the feature extraction block can adapt accordingly. For all the convo-
lutional layers we have used 3 × 3 filters with zero-padding, ReLu activations
and gradually increased the number of filters from 32 filters for the first to 512
in the following layers, i.e. 64, 128, 256 and 512. For all our results, we have
used an 8-dimensional primary capsule and all the secondary capsules Sn are
16-dimensional with dynamic routing [20]. In all our experiments we have set
m+, m− and γ to 0.9, 0.1 and 0.5, respectively. The value of τ in Eq. 1 has been
set to 0.0005.

We have assigned coarse and medium classes to the datasets to construct a
hierarchical label tree. In this setting, coarse labels are a superclass of several
corresponding medium-level labels for the dataset and these labels in turn are
a superclass for the fine labels prescribed for the dataset under consideration.
As a result, each instance will have multiple labels in the hierarchy, i.e. one
per level. Recall that the MNIST and Fashion-MNIST dataset contains 28 × 28
grey-scale images. Both datasets have 60, 000 training and 10, 000 testing images.
For the MNIST, which contains images of handwritten digits, we have followed
[34] and added five coarse classes for the dataset. The Fashion-MNIST dataset
is similar to the MNIST dataset and contains images of fashion products for
ten fine classes. We use the coarse to medium hierarchy presented in [21], which

Table 1. Accuracy yielded by our ML-CapsNet, the B-CNN [34] and the baseline [20]
on the MNIST and Fashion-MNIST datasets. The absolute best are in bold.

Model Accuracy (%)

MNIST Fashion-MNIST

Coarse Fine Coarse Medium Fine

CapsNet – 99.3 – – 91.2

B-CNN 99.2 99.28 99.57 95.52 92.04

ML-CapsNet 99.65 99.5 99.73 95.93 92.65
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Table 2. Accuracy yielded by our ML-CapsNet, the B-CNN [34] and the baseline [20]
on the CIFAR-10 and CIFAR-100 datasets. The absolute best are in bold.

Model Accuracy (%)

CIFAR-10 CIFAR-100

Coarse Medium Fine Coarse Medium Fine

CapsNet – – 70.42 – – 34.93

B-CNN 95.63 86.95 84.95 71.04 61.94 55.52

ML-CapsNet 97.52 89.27 85.72 78.73 70.15 60.18

manually adds a coarse and medium level for the dataset. In [34], the coarse level
has two classes, and the medium level has six classes. The CIFAR-10 and CIFAR-
100 dataset consist 32 × 32 colour images and have 50, 000 training images and
10, 000 testing images in 10 and 100 fine classes, respectively. Here, we use the
class-hierarchy used in [34], which adds an additional coarse and medium levels
for the dataset whereby the coarse level contains two classes and the medium
contains seven classes. The CIFAR-100 dataset is similar to CIFAR-10, except
it has 100 fine and 20 medium classes. We have used the hierarchy in [34], which
groups the medium and fine classes into eight coarse ones.

3.2 Experimental Setup

As mentioned earlier, in order to compare our ML-CapsNet with alternatives
elsewhere in the literature, we have used the CapsNet as originally proposed in
[20] as a baseline and compared our results with those yielded by the B-CNN [34].
In all our experiments, we normalise the training and testing data by subtracting
the mean and dividing by the standard deviation. For all the datasets, the B-
CNN follows the exact model architecture and training parameters used by the
authors in [34]. For training the B-CNN model on the Fashion-MNIST dataset,
we followed the architecture for the MNIST dataset and added an additional
branch for the fine level.

When training our ML-CapsNet on the CIFAR-10 and CIFAR-100 datasets,
we apply MixUp data augmentation [31] with α = 0.2. Also, recall that the λn

values in Eq. 1 govern the contribution of each hierarchy level to the overall loss
function. Thus, for our ML-CapsNet, we adjust the λn values as the training
progresses so as to shift the importance of the class-level hierarchy from course-
to-fine. As a result, on the MNIST dataset we set the initial λn to 0.90, 0.10 for
the coarse and fine levels, respectively. The value of λn is then set to 0.10, 0.90
after 5 epochs and 0.02, 0.98 after 10. For the Fashion-MNIST dataset the initial
loss weight values for λn are 0.98, 0.01, 0.01 for the coarse, medium and fine
hierarchies. The value of λn after 5 epochs becomes 0.10, 0.70, 0.20, after 10
epochs shifts to 0.07, 0.10, 0.83, at 15 epochs is set to 0.05, 0.05, 0.90 and,
finally, at 25 epochs assumes the value of 0.01, 0.01, 0.98. For the CIFAR-10
dataset, the initial λn values are 0.90, 0.05 and 0.05 for the coarse, medium
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Fig. 2. Accuracy as a function of training epoch for all the models under consideration.
The left-hand panel shows the plots for the MNIST dataset whereas the right-hand
panel corresponds to the Fashion-MNIST dataset.

and fine class-hierarchy levels. The λn then changes to 0.10, 0.70 and 0.20 after
Epoch 5 and, at Epoch 11 is set to 0.07, 0.20 and 0.73. At Epoch 17 is set to
0.05, 0.15 and 0.80, taking its final value of 0.05, 0.10 and 0.85 at Epoch 24.
For the CIFAR-100 dataset the initial values are 0.90, 0.08 and 0.02, which then
change to 0.20, 0.70 and 0.10 after 7 epochs. After Epoch 15 we set these to
0.15, 0.30 and 0.55. At Epoch 22 we modify them to be 0.10, 0.15 and 0.75 and,
at Epoch 33, they take their final value of 0.05, 0.15 and 0.80.

3.3 Results

We now turn our attention to the results yielded by our network, the CapsNet
as originally proposed in [20] and the B-CNN in [34] when applied to the four
datasets under consideration. In Table 1 we show the performance yielded by
these when applied to the MNIST and Fashion-MNIST dataset. Similarly, in
Table 2, we show the accuracy for our network and the alternatives when applied
to the CIFAR-10 and CIFAR-100 datasets. In the tables, we show the accuracy
for all the levels of the applicable class-hierarchies for both, our network and
the B-CNN. We also show the performance on the CapsNet in [20] for the fine
class-hierarchy. We do this since the baseline is not a hierarchical classification
one, rather the capsule network as originally proposed in [20] and, therefore, the
medium and coarse label hierarchies do not apply.

Note that, for all our experiments, our network outperforms the alternatives.
It is also worth noting that, as compared with the baseline, it fairs much better
for the more complex datasets of CIFAR-10 and CIFAR-100. This is also con-
sistent with the plots in Figs. 2 and 3, which show the model accuracy on the
dataset under consideration for every one of their corresponding class-hierarchies.
Note that in several cases, our network not only outperforms B-CNN, but also
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Fig. 3. Accuracy as a function of training epoch for all the models under consideration.
The left-hand panel shows the plots for the CIFAR-10 dataset whereas the right-hand
panel corresponds to the CIFAR-100 dataset.

converges faster. It is also important to note that, as compared to the baseline,
our ML-CapsNet employs the hierarchical structure of the class-set to impose
consistency through the loss. This appears to introduce a structural constraint
on the prediction that helps improve the results.

This is consistent with the reconstruction results shown in Fig. 4. In the
figure, we show the reconstruction results for the classes in the Fashion-MNIST
for both, our ML-CapsNet and the capsule network as originally proposed in
[20]. In the figure, from top-to-bottom, the rows show the input image, the
image reconstructed by our network and that yielded by that in [20]. Note the
images reconstructed using our network are much sharper, showing better detail
and being much less blurred. This is somewhat expected, since the reconstruction

Fig. 4. Sample reconstructed images for the Fashion-MNIST dataset. From top to
bottom we show the input image, the image reconstructed by our ML-Capsnet and
that reconstructed using the capsule network in [20].
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error is also used by the loss and, hence, better reconstruction should yield higher
accuracy and vice versa.

4 Conclusions

In this paper, we have presented a capsule network for image classification, which
uses capsules to predict multiple hierarchical classes. The network presented
here, which we name ML-CapsNet, employs a shared primary capsule, making
use of a secondary one for each class-label set. To enforce the multi-label struc-
ture into the classification task, we employ a loss which balances the contribution
of each of the class-sets. The loss proposed here not only enforces consistency
with the label structure, but incorporates the reconstruction loss making use
of a common encoder. We have shown results on four separate widely available
datasets. In our experiments, our ML-CapsNet outperforms the B-CNN [34] and
the classical capsule network in [20]. As expected, it also delivers better recon-
structed images than those yielded by the network in [20].
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