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Abstract

Hierarchical multi-label classification in computer vision presents significant challenges in maintaining

consistency across different levels of class granularity while capturing fine-grained visual details. This paper

presents HT-CapsNet, a novel capsule network architecture that explicitly incorporates taxonomic relation-

ships into its routing mechanism to address these challenges. Our key innovation lies in a taxonomy-aware

routing algorithm that dynamically adjusts capsule connections based on known hierarchical relationships,

enabling more effective learning of hierarchical features while enforcing taxonomic consistency. Through

the integration of hierarchical agreement mechanisms and taxonomy-guided routing, our model effectively

captures the spatial relationships and interdependencies among labels, facilitating improved representation

learning. Extensive experiments on six benchmark datasets, including Fashion-MNIST, Marine-Tree, CIFAR-

10, CIFAR-100, CUB-200-2011, and Stanford Cars, demonstrate that HT-CapsNet significantly outperforms

existing methods across various hierarchical classification metrics. The taxonomy-guided routing mechanism

significantly improves both classification accuracy and hierarchical consistency, showcasing the robustness

and effectiveness of our approach in handling complex hierarchical multi-label classification tasks.

1. Introduction1

Image classification presents a fundamental chal-2

lenge in computer vision, particularly when deal-3

ing with real-world scenarios where images ex-4
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hibit complex semantic relationships. While tra- 5

ditional classification approaches assign single la- 6

bels to images, many practical applications require 7

understanding multiple levels of abstraction simul- 8

taneously. Hierarchical Multi-Label Classification 9

(HMC) emerges as a critical paradigm that ad- 10

dresses these complexities by enabling images to be 11

classified across multiple semantic levels while re- 12

specting predefined taxonomic relationships [1, 2]. 13

Unlike standard multi-label classification, where la- 14

bels are treated independently[3], HMC explicitly 15
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models the intrinsic parent-child relationships be-16

tween classes[4], creating a structured prediction17

framework that mirrors natural object categoriza-18

tion, making it particularly valuable in domains19

such as image recognition, document categoriza-20

tion [5], protein function prediction [6], and fine-21

grained image classification [7]. For instance, in22

visual recognition tasks, an image might be classi-23

fied as “vehicle” at the coarsest level, “land vehi-24

cle” at an intermediate level, and “car” at the finest25

level, with each level providing increasingly spe-26

cific information [8]. This hierarchical approach27

offers several distinct advantages over alternative28

methods. First, it enables more nuanced and inter-29

pretable predictions by capturing the natural tax-30

onomy of visual concepts [9]. Second, it allows31

for flexible querying and retrieval at different lev-32

els of granularity, making it particularly valuable33

for applications like content-based image retrieval34

and visual search [10]. Third, by leveraging hierar-35

chical relationships, these systems can potentially36

achieve better generalization, especially for fine-37

grained categories with limited training data [7].38

These capabilities have made HMC increasingly rel-39

evant across diverse domains, from fine-grained ob-40

ject recognition to medical image analysis [11].41

Despite its practical importance, developing ef-42

fective HMC systems presents several significant43

challenges. A fundamental difficulty lies in main-44

taining hierarchical consistency, which requires en-45

suring that predictions respect the parent-child re-46

lationships in the label hierarchy [12, 13]. Tra-47

ditional deep learning approaches, while power-48

ful for flat classification and multi-label classifica-49

tion, often struggle to maintain these hierarchical50

constraints, potentially predicting incompatible la- 51

bel combinations that violate the underlying tax- 52

onomy. Additionally, most existing methods treat 53

the hierarchical structure as a post-processing con- 54

straint rather than integrating it directly into the 55

learning process [14, 15], leading to suboptimal 56

use of taxonomical information. The inherent com- 57

plexity of simultaneously modelling multiple hier- 58

archical levels while preserving label dependencies 59

increases computational demands and model com- 60

plexity [14, 16, 17]. These challenges are further 61

compounded in real-world applications where the 62

label hierarchy can be deep and complex [18], with 63

varying numbers of classes at different levels and 64

intricate inter-level relationships. The critical na- 65

ture of modelling hierarchical feature dependen- 66

cies is visually demonstrated in Figure 1, which il- 67

lustrates Class Activation Maps (CAMs) across dif- 68

ferent hierarchical levels. These visualizations re- 69

veal how visual attention patterns should naturally 70

evolve from coarse to fine semantic levels during 71

classification. For example, when classifying vehi- 72

cles, effective hierarchical models should first at- 73

tend to general shape and structure at coarse lev- 74

els (e.g., “transport”), then progressively focus on 75

more specific discriminative features at finer levels 76

(e.g., “automobile” vs “truck”). However, as shown 77

in the figure, traditional approaches often fail to 78

maintain this hierarchical consistency in feature at- 79

tention, leading to fragmented or inconsistent fea- 80

ture localization across levels. This inconsistency 81

can result in reduced interpretability and reliability 82

of classifications, particularly in fine-grained sce- 83

narios where subtle feature differences determine 84

class membership [10]. The importance of coher- 85
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ent feature relationships across hierarchical levels86

is highlighted as a significant challenge that current87

methods have not adequately addressed.88

Capsule Networks (CapsNets), introduced by89

Hinton et al. in [20], represent a significant ad-90

vancement in deep learning architecture design.91

Unlike traditional convolutional neural networks92

(CNNs) that rely solely on scalar-valued feature93

maps [21], CapsNets employ groups of neurons94

called capsules that output vectors representing95

entity properties and their instantiation parame-96

ters. The key innovation of CapsNets lies in their97

dynamic routing-by-agreement mechanism [20],98

which enables parts-to-whole relationships to be99

learned through iterative refinement of connections100

between capsules at different levels. This architec-101

tural characteristic makes CapsNets inherently suit-102

able for capturing hierarchical relationships [13],103

as they naturally model the compositional nature104

of features and their hierarchical organization.105

However, existing capsule network architectures106

have not been fully optimized for hierarchical107

multi-label classification tasks. While the routing-108

by-agreement mechanism shows promise for hier-109

archical learning, current approaches do not explic-110

itly incorporate label taxonomy information into111

the routing process [22, 23]. This limitation results112

in routing decisions that may not align with known113

hierarchical relationships between classes. Further-114

more, existing methods often treat each level of the115

hierarchy independently during the routing process116

[13, 19], missing opportunities to leverage cross-117

level dependencies and enforce consistency con-118

straints.119

To address these limitations, we propose Hier-120

archical Taxonomy-aware Capsule Network (HT- 121

CapsNet), a novel architecture that explicitly in- 122

corporates taxonomical information into the cap- 123

sule routing process. Our approach introduces a 124

taxonomy-guided routing mechanism that dynam- 125

ically adjusts routing weights based on known hi- 126

erarchical relationships between classes. This is 127

achieved through a specialized routing algorithm 128

that combines traditional routing-by-agreement 129

with a taxonomy-aware attention mechanism, en- 130

suring that capsule connections respect the natu- 131

ral hierarchy of the classification task. HT-CapsNet 132

employs a multi-level architecture where each level 133

corresponds to a different granularity in the label 134

hierarchy, with bidirectional information flow en- 135

abling both top-down and bottom-up refinement 136

of predictions. The architecture features hierarchi- 137

cal consistency regularization that enforces parent- 138

child relationships during training, and adaptive 139

routing coefficients that automatically adjust based 140

on the hierarchical level and local taxonomic struc- 141

ture. The main contributions of this work can be 142

summarized as: i) We propose an end-to-end cap- 143

sule network architecture for hierarchical multi-la- 144

bel classification that naturally captures label de- 145

pendencies through its capsule structure while ex- 146

plicitly incorporating the hierarchical taxonomy in- 147

formation into the network design. ii) We intro- 148

duce a novel hierarchical routing algorithm that en- 149

hances the traditional dynamic routing mechanism 150

by incorporating taxonomy-awareness, enabling 151

more effective learning of hierarchical features 152

while maintaining taxonomical consistency across 153

different levels of the hierarchy. iii) Through exten- 154

sive experiments on multiple benchmark datasets, 155
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Figure 1: Class Activation Maps (CAMs) for our proposed HT-CapsNet, capsule based HD-CapsNet [19] and convolution based B-

CNN [16] baseline models across different hierarchical levels (l = 1, 2, 3). Each row shows a different image, with columns showing

the input image and corresponding CAMs at each level. HT-CapsNet demonstrates more focused and coherent attention patterns

that progressively refine from coarse to fine levels, maintaining hierarchical consistency. For instance, in vehicle images (rows 1-3),

attention begins with focused discriminative regions at level 1, gradually expanding to capture broader contextual features at level

3. Similarly, for animal images (rows 4-6), the attention patterns progress from precise focal points to more comprehensive feature

regions, demonstrating HT-CapsNet’s ability to leverage both fine-grained and holistic features across the hierarchy. This hierarchical

attention pattern is notably more coherent in HT-CapsNet compared to the baseline models, which show less structured progression

across levels.

we demonstrate that, HT-CapsNet achieves supe-156

rior performance compared to existing methods157

across various hierarchical classification metrics.158

The taxonomy-guided routing mechanism signifi-159

cantly improves both classification accuracy and160

hierarchical consistency. Our approach maintains161

computational efficiency while handling complex162

hierarchical relationships.163

The remainder of this paper is organized as fol-164

lows: Section 2 reviews related work in deep neu- 165

ral networks for hierarchical classification and cap- 166

sule networks. Section 3 presents our proposed HT- 167

CapsNet architecture and taxonomy-aware routing 168

mechanism in detail. Section 4 describes our exper- 169

imental setup and results. Section 5 discusses the 170

implications and limitations of our approach, and 171

Section 6 concludes the paper with final remarks 172

and future directions. 173
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2. Related Works174

The evolution of deep learning approaches for175

HMC represents a critical intersection of structured176

prediction and representation learning. While sig-177

nificant advances have been made in both hier-178

archical classification methodologies and neural179

network architectures, the challenge of effectively180

modelling complex taxonomic relationships while181

maintaining computational efficiency remains at182

the forefront of computer vision research [24]. This183

section examines two streams of research that in-184

form our work: deep neural networks for hier-185

archical classification and developments in cap-186

sule network architectures. We first analyze how187

deep learning approaches have progressively ad-188

dressed the challenges of hierarchical classification,189

highlighting both their contributions and limita-190

tions. We then explore the evolution of capsule net-191

works, focusing particularly on their potential for192

modelling hierarchical relationships and the cur-193

rent gaps in their application to taxonomic learning194

tasks.195

2.1. Deep Neural Networks for HMC196

Hierarchical multi-label classification has seen197

significant developments with the advent of deep198

learning approaches. Early work in this domain fo-199

cused on adapting traditional neural networks to200

handle hierarchical relationships [14, 16, 25], pri-201

marily through modified loss functions [26] and202

output layer structuring [27]. These initial ap-203

proaches, while innovative, often struggled with204

maintaining consistency across hierarchical levels.205

The emergence of convolutional neural networks206

(CNNs) marked a significant advancement in hi- 207

erarchical image classification. Several pioneering 208

works proposed architectures that leverage the in- 209

herent hierarchical nature of CNN feature maps 210

[15]. A notable approach introduced branched 211

architectures [16, 25], where different network 212

branches specialized in different levels of the hi- 213

erarchy. These branched architectures address the 214

varying granularity requirements across hierarchi- 215

cal levels by maintaining separate feature extrac- 216

tion pathways, allowing each branch to focus on 217

features relevant to its specific level of abstraction. 218

This architectural pattern proved particularly ef- 219

fective in capturing both coarse-grained features 220

necessary for high-level categorization and fine- 221

grained details required for specific classification. 222

The approach was further enhanced by methods 223

that incorporated attention mechanisms to dynam- 224

ically weigh features based on their relevance to 225

different hierarchical levels [28]. These attention- 226

enhanced models demonstrated improved perfor- 227

mance by learning to focus on discriminative fea- 228

tures specific to each level while maintaining over- 229

all hierarchical consistency. The success of these 230

approaches highlighted the importance of level- 231

specific feature learning in hierarchical classifica- 232

tion tasks, though challenges remained in effi- 233

ciently coordinating information flow between dif- 234

ferent branches and maintaining consistent predic- 235

tions across levels. 236

Recent developments have focused on more so- 237

phisticated approaches to handling hierarchical 238

relationships. One significant line of research 239

explores graph-based neural networks [29, 30], 240

where class hierarchies are explicitly modelled as 241
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graphs, allowing the network to learn relationships242

between different levels directly. Another promis-243

ing direction involves transformer-based architec-244

tures [31] that leverage self-attention mechanisms245

to capture long-range dependencies across hierar-246

chical levels. Several approaches have been pro-247

posed to address the challenge of maintaining hi-248

erarchical consistency. These include hierarchical249

loss functions [26, 19], which explicitly penalize250

violations of taxonomic constraints, and regulariza-251

tion techniques [32] that encourage feature shar-252

ing between related classes across different levels.253

More recent work has explored probabilistic ap-254

proaches [7] that model the uncertainty in hier-255

archical predictions. Despite these advances, sev-256

eral challenges remain. Most existing approaches257

treat hierarchical relationships as static constraints258

rather than learnable structures [14, 16, 33]. Addi-259

tionally, many methods struggle with the trade-off260

between global hierarchical consistency and local261

classification accuracy [22, 17]. The computational262

complexity of these approaches also remains a sig-263

nificant concern, particularly for deep hierarchies264

with many classes.265

2.2. Capsule Networks266

Capsule Networks represent a fundamental shift267

in deep learning architecture design. Since their268

introduction by Sabour et al. [20], they have of-269

fered a novel perspective on building more robust270

and interpretable neural networks. The core in-271

novation of capsules lies in their ability to encode272

entity properties in vector form, allowing for bet-273

ter preservation of hierarchical relationships and274

spatial information compared to traditional neural275

networks [34, 13, 19]. The dynamic routing-by- 276

agreement mechanism, a key component of Cap- 277

sNets, has seen several important developments. 278

Initial work focused on improving the routing al- 279

gorithm’s efficiency and stability [34, 35]. Sub- 280

sequent research introduced variations such as 281

self-routing [36], SDA-routing [37] and attention- 282

based routing [38, 39], each offering different ap- 283

proaches to establishing connections between cap- 284

sules. 285

Several studies have explored modifications to 286

the basic capsule architecture to enhance its ca- 287

pabilities. These include approaches for handling 288

varying architecture sizes [40], methods for in- 289

corporating spatial relationships more effectively 290

[41], and techniques for improving the network’s 291

scalability to larger datasets [42]. Recent work 292

has also investigated the integration of modern 293

deep learning concepts such as self-attention mech- 294

anisms [39] and residual connections [13] into 295

the capsule framework. In the context of hierar- 296

chical classification, capsule networks have shown 297

promising potential. Their ability to model part- 298

whole relationships naturally aligns with hierarchi- 299

cal structure learning [13, 13]. Some approaches 300

have explored using capsules for multi-level feature 301

representation [22, 13], while others have focused 302

on adapting the routing mechanism to handle hier- 303

archical relationships. 304

However, existing capsule-based approaches for 305

hierarchical classification face several limitations. 306

Most notably, they typically don’t explicitly incorpo- 307

rate known taxonomic relationships into the rout- 308

ing process [13, 19]. Additionally, the computa- 309

tional complexity of routing algorithms often limits 310
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their application to deeper hierarchies [40]. Our311

work addresses these limitations by introducing a312

taxonomy-aware routing mechanism that explicitly313

incorporates hierarchical relationships while main-314

taining the computational efficiency necessary for315

practical applications. This represents a significant316

advance in both capsule network architecture and317

hierarchical classification methodology.318

3. Method319

We consider the problem of learning when the la-320

bels follow a hierarchical taxonomy structure with321

multiple levels, where each level represents a dif-322

ferent granularity of classification. Let X = {xi}Ni=1323

denote a training dataset with N samples. For each324

sample, we have labels at L different hierarchi-325

cal levels, denoted as Y =
{{

yli
}L
l=1

}N

i=1
where326

yli ∈ {0, 1}
Kl is a one-hot encoded vector subject327

to
∑Kl

k=1 y
l
i,k = 1. Here, Kl denotes the num-328

ber of classes at level l, typically KL > KL−1 >329

. . . > K1. The label yli represents the label for sam-330

ple xi at level l. The hierarchical relationships be-331

tween classes at adjacent levels are encoded in a332

taxonomy matrix T l for each level l. Here, T l ∈333

{0, 1}Kl×Kl+1 for l = 1, . . . , L − 1. Each entry T l
i,j334

indicates whether class j at level l + 1 is a child of335

class i at level l, such that,336

T l
i,j =

1, if j ∈ {children of class i}

0, otherwise
(1)

For any sample xi, the consistency constraint can337

be expressed as:338

yli = yl+1
i

(
T l
)T

; ∀ l ∈ {1, . . . , L− 1} (2)

This ensures that if the sample belongs to a class at 339

level l+1, it must belong to the corresponding par- 340

ent class at level l. This hierarchical consistency is 341

crucial for maintaining logical relationships in the 342

prediction hierarchy. To address this hierarchical 343

classification problem, we propose HT-CapsNet, a 344

novel capsule network architecture that explicitly 345

incorporates taxonomical relationships into its ar- 346

chitecture and routing mechanism. 347

3.1. Hierarchical Taxonomy-aware Capsule Network 348

In this work we propose Hierarchical Taxonomy- 349

aware Capsule Network (HT-CapsNet1), that ex- 350

plicitly incorporates class taxonomy information 351

into the routing mechanism of capsule networks. 352

Our architecture leverages the hierarchical struc- 353

ture of class labels while enforcing taxonomic con- 354

sistency through a specialized routing algorithm. 355

The overall architecture of HT-CapsNet is illus- 356

trated in Figure 2, which consists of three pri- 357

mary components: a feature extraction backbone, 358

multiple primary capsule layers (Pl), and multiple 359

taxonomy-aware secondary capsule layers (Sl) for 360

lth hierarchical level. 361

The feature extraction block in our network is 362

responsible for extracting high-level features from 363

the input data. We employ a standard convolu- 364

tional neural network (CNN) architecture for this 365

purpose. Let ϕ (xi | θB) ∈ RH×W×C denote the fea- 366

ture maps extracted from input xi through a convo- 367

lutional backbone network ϕ (· | θB): 368

F = ϕ (xi | θB) ∈ RH×W×C (3)

1Our implementation of HT-CapsNet is available at https:

//github.com/tasrif-khondaker/HT-CapsNet
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Figure 2: Architecture of the proposed Hierarchical Taxonomy-aware Capsule Network (HT-CapsNet). The network consists of a

feature extraction backbone, multiple primary capsule layers (Pl), and multiple taxonomy-aware secondary capsule layers (Sl) for

each hierarchical level l. The primary capsules are reshaped from the feature maps extracted by the backbone network, while the

secondary capsules are formed based on the predictions from the previous level and the primary capsules. The routing process between

primary and secondary capsules, as well as between consecutive secondary capsule layers, is guided by the proposed taxonomy-aware

routing mechanism in algorithm 1 to enforce hierarchical consistency. The final predictions are obtained by computing the normalized

lengths of the secondary capsule vectors. The network is trained end-to-end using a multi-level loss function that incorporates both

classification and hierarchical consistency constraints.

where H, W are the spatial dimensions of the fea-369

ture maps, C is the number of channels and θB rep-370

resents the parameters of the backbone network.371

In the primary capsule layer (P ), as outlined372

in [20, 34], an essential process is undertaken to373

transform the feature maps F into capsule vectors.374

The primary capsule layer is formed by reshap- 375

ing these features into a set of N l
p primary cap- 376

sules, where each capsule is represented by a dlp- 377

dimensional vector: 378

Pl = squash (reshape (F )) ∈ RN l
p×dl

p (4)
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where N l
p = H×W×C

dl
p

represents the number of pri-379

mary capsules after reshaping the feature maps into380

capsules of dimension dlp. Each primary capsule is381

denoted as:382

pli ∈ Rdl
p , i ∈ {1, . . . , N l

p} (5)

The squash function in Equation 4 is a non-linear383

activation function that ensures the length of each384

capsule vector is within the range [0, 1], while pre-385

serving its orientation. It is defined as:386

vo = squash(vin) =
||vin||2

1 + ||vin||2
vin
||vin||

(6)

where vin and vo represent the input and output387

capsule vectors, respectively.388

The secondary capsule layers (Sl) in HT-CapsNet389

are constructed to capture hierarchical relation-390

ships across multiple levels. For each hierarchi-391

cal level l, there is a taxonomy-aware secondary392

capsule layer that processes information from two393

sources: the level-specific primary capsules and, for394

levels beyond the first, the predictions from the pre-395

vious level. This dual-input structure enables both396

feature preservation and hierarchical information397

propagation. Each secondary capsule layer Sl con-398

tains Kl capsules, corresponding to the number of399

classes at level l. Each capsule represents a dis-400

tinct class and is characterized by a dls-dimensional401

vector that encodes the instantiation parameters of402

that class:403

Sl =
{
slk ∈ Rdl

s

}Kl

k=1
(7)

where slk represents the capsule vector associ-404

ated with class k at level l. The connections be-405

tween these capsules are governed by our novel406

taxonomy-aware routing mechanism (detailed in407

Section 3.2), which plays a crucial role in enforc- 408

ing hierarchical consistency while allowing flexible 409

learning of part-whole relationships. This special- 410

ized routing algorithm incorporates the predefined 411

class taxonomy to guide the routing process, en- 412

suring that capsule agreements respect the known 413

hierarchical structure while maintaining the net- 414

work’s ability to discover and learn meaningful hi- 415

erarchical patterns in the data. The input to each 416

secondary capsule layer is carefully structured to 417

preserve both low-level feature representations and 418

hierarchical context. For each level l, the input Zl 419

is initially formed as follows: 420

Zl =

Pl, if l = 1

([Pl;Sl−1] , Sl−1), if l > 1

(8)

where [; ] denotes concatenation along the capsule 421

dimension, and in our implementation, we ensure 422

dlp = dl−1
s for l > 1 to maintain dimensional com- 423

patibility during concatenation. This formulation 424

ensures that while higher levels incorporate predic- 425

tions from lower levels, they maintain access to the 426

primary feature representations through Pl, pre- 427

venting information loss in deeper levels of the hi- 428

erarchy. 429

The final predictions at each level are obtained 430

by computing normalized lengths of the secondary 431

capsule vectors. For each level l, the prediction 432

layer Yl transforms the secondary capsule represen- 433

tations into class probabilities: 434

Yl =
{
ŷlk
}Kl

k=1
, (9)

where ŷlk represents the probability of class k at 435

level l. The class probabilities are computed as fol- 436

9
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lows:437

ŷlk =
exp

(∥∥slk∥∥)∑Kl

j=1 exp
(∥∥slj∥∥) (10)

where
∥∥slk∥∥ denotes the Euclidean norm of the cap-438

sule vector slk. The softmax normalization ensures439

a proper probability distribution over the classes at440

each level.441

While the architectural design of HT-CapsNet442

provides the foundation for hierarchical learn-443

ing, the key innovation lies in how information444

flows through these components via our proposed445

taxonomy-aware routing mechanism. Unlike con-446

ventional routing mechanisms for capsule net-447

works that overlook hierarchical relationships, our448

approach explicitly incorporates taxonomic con-449

straints into the routing process, ensuring that the450

network learns meaningful hierarchical patterns451

while maintaining taxonomic consistency. This spe-452

cialized routing algorithm guides the flow of infor-453

mation between capsules, enabling the network to454

capture both local and global hierarchical relation-455

ships in the data.456

3.2. Taxonomy-Aware Routing457

The key innovation in HT-CapsNet lies in our458

taxonomy-aware routing algorithm, which explic-459

itly incorporates hierarchical class relationships460

into the routing process to enforce taxonomic con-461

sistency. This mechanism ensures that the cap-462

sule agreements align with the known hierarchi-463

cal structure of the classes, while maintaining the464

flexibility to learn novel hierarchical patterns. The465

routing process occurs between primary capsules466

and each level of secondary capsules, as well as be-467

tween consecutive levels of secondary capsules, en-468

suring taxonomic consistency throughout the net- 469

work. Our approach modifies the routing coeffi- 470

cients based on the predefined taxonomy matrix 471

while maintaining the network’s ability to learn 472

flexible part-whole relationships. 473

The taxonomy-aware routing mechanism oper- 474

ates by integrating three key components: vote 475

generation, taxonomy-guided coefficient computa- 476

tion, and hierarchical agreement calculation. These 477

components work together to ensure that the 478

routing process respects hierarchical relationships 479

while maintaining flexibility in learning part-whole 480

relationships. For each level l, the routing process 481

begins with the computation of prediction vectors 482

(votes) through learnable transformation matrices. 483

Given an input capsule zli ∈ Zl, the vote for sec- 484

ondary capsule k is computed as: 485

vli,k = W l
i,kz

l
i (11)

where W l
i,k ∈ Rdl

s×dl
p is a learnable transformation 486

matrix that maps the input capsule to the predic- 487

tion vector space of level l. 488

The taxonomy-aware routing algorithm intro- 489

duces a fundamentally new approach to routing in 490

capsule networks by incorporating explicit hierar- 491

chical relationships into the agreement mechanism. 492

This routing process adaptively guides the flow of 493

information between capsules while enforcing tax- 494

onomic consistency across hierarchical levels. The 495

routing coefficients cli,k between input capsule i 496

and secondary capsule k at level l are computed 497

as: 498

cli,k =


exp(bli,k)∑Kl
j=1 exp(bli,j)

; if l = 1

exp(τlbli,k·m
l
i,k)∑Kl

j=1 exp(τlbli,j ·ml
i,j)

; otherwise
(12)

10

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5127434

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



where τl is a temperature parameter that controls499

the sharpness of the routing distribution, bli,k is the500

pre-routing logit, and ml
i,k is a taxonomy-derived501

mask. For the first level (l = 1), standard softmax502

routing is used since there are no parent-child rela-503

tionships to consider. For higher levels, the routing504

coefficients are modulated by the taxonomy mask505

to enforce hierarchical consistency. The mask ml
i,k506

is defined as:507

ml
i,k = (βh − βl) · σ

(
λT

(
T l
i,k

∥∥∥sl−1
p(k)

∥∥∥− µc

))
+ βl

(13)

where βh and βl are high and low threshold values508

that bound the masking effect, effectively creating509

a soft gating mechanism that allows some flexibil-510

ity in the routing process while still enforcing taxo-511

nomic constraints. The parameters λT controls the512

concentration of the taxonomy influence, σ(·) is the513

sigmoid function, µc is the center value, and T l
i,k is514

the taxonomy matrix value.
∥∥∥sl−1

p(k)

∥∥∥ represents the515

activation strength of the parent capsule, ensuring516

that routing decisions are influenced by the parent517

class’s confidence.518

For levels beyond the first (l > 1), we introduce519

a hierarchical agreement mechanism that ensures520

consistency between consecutive levels. This mech-521

anism processes both the primary capsule informa-522

tion and the predictions from the previous level’s523

secondary capsules. The hierarchical agreement524

score hl
i,k for a vote vli,k is computed as:525

hl
i,k = σ

Kl−1∑
j=1

glk,j
〈
vli,k,W

l
hs

l−1
j

〉 (14)

where glk,j ∈ RKl×Kl−1 is a hierarchical gate that526

controls information flow between classes at adja-527

cent levels, W l
h ∈ Rdl

s×dl−1
s is a dimension trans-528

formation matrix that aligns the dimensionality of 529

capsules between levels, and sl−1
j represents the 530

secondary capsule outputs from the previous level. 531

The hierarchical gates glk,j and the transformation 532

matrix W l
h are learned parameters initialized to 533

bias connections according to the taxonomy struc- 534

ture, allowing the network to adaptively refine 535

these relationships during training. The agreement 536

scores are then used to modify the vote vectors, en- 537

suring that routing decisions at higher levels are 538

influenced by the established hierarchical relation- 539

ships: 540

vli,k ← hl
i,k; ∀l > 1 (15)

This hierarchical agreement term ensures that the 541

routing process at higher levels is influenced by 542

hierarchically-aware representations based on the 543

previous level’s predictions, maintaining hierarchi- 544

cal consistency throughout the network. 545

The final secondary capsule vectors are com- 546

puted through an iterative routing process that in- 547

tegrates the taxonomy-guided routing coefficients, 548

hierarchical agreements, and attention mecha- 549

nisms. The initial capsule updates are computed 550

through a two-stage process. First, for each sec- 551

ondary capsule ŝlk at level l, based on the routing 552

coefficients cli,k and votes vli,k, an intermediate rep- 553

resentation is determined: 554

ŝlk = squash

(
Nl∑
i=1

cli,kv
l
i,k

)
(16)

where Nl is the total number of input capsules at 555

level l. The squash function ensures the capsule 556

vectors have unit length while preserving their ori- 557

entation. After each iteration, the routing logits 558

are updated based on the agreement between the 559

11
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transformed vote vectors vli,k (which are the votes560

after applying hierarchical agreement) and current561

capsule outputs:562

bli,k ← bli,k +
〈
vli,k, ŝ

l
k

〉
(17)

Following the routing iterations, the intermediate563

capsule representations are refined through level-564

specific attention mechanisms. For the first level565

(l = 1), self-attention [43] is applied to capture566

intra-level relationships. Similarly, for higher levels567

(l > 1), multi-head attention [43] is used to cap-568

ture both local and global hierarchical dependen-569

cies. The final capsule representations are obtained570

through layer normalization:571

slk =
∥∥ŝlk +Al

∥∥
n

(18)

where Al represents the attention output, and ∥ ·∥n572

denotes vector normalization operation that pre-573

serves dimensionality. The normalization process574

standardizes the capsule vectors, ensuring they575

maintain consistent magnitudes while preserving576

their directional information. This process en-577

sures that the final capsule vectors are robust and578

well-calibrated, capturing both local and global hi-579

erarchical relationships in the data. This three-580

stage process involving routing, attention, and nor-581

malization creates a sophisticated mechanism for582

learning hierarchical representations. These pro-583

cess allows the network to maintain taxonomic con-584

sistency, capture hierarchical dependencies, and585

discover complex patterns in the data while en-586

suring stable learning. Further, the interaction587

between the taxonomy-guided routing coefficients588

and hierarchical agreements creates a powerful589

mechanism that can simultaneously respect class590

hierarchies while discovering novel patterns in the 591

data. This adaptive routing process allows the net- 592

work to learn robust hierarchical representations 593

while maintaining consistency with the known tax- 594

onomic structure. 595

The complete routing algorithm integrates these 596

components into an iterative process that pro- 597

gressively refines capsule representations while 598

maintaining both hierarchical consistency and tax- 599

onomic relationships. Algorithm 1 provides a 600

detailed step-by-step description of this process, 601

showing how the taxonomy-aware routing mecha- 602

nism coordinates the flow of information across dif- 603

ferent levels of the hierarchy while enforcing taxo- 604

nomic constraints. 605

3.3. Loss Function 606

Training HT-CapsNet requires a loss function that 607

effectively handles both the hierarchical nature of 608

the classification task and the capsule-based archi- 609

tecture. Our loss function combines margin-based 610

objectives across different hierarchical levels while 611

ensuring consistency with the taxonomic structure. 612

For each hierarchical level l, we employ a 613

margin-based loss that operates directly on the cap- 614

sule lengths. Given the predicted capsule vectors slk 615

and their corresponding lengths
∥∥slk∥∥ from Equa- 616

tion 10, the level-specific loss is defined as: 617

Ll =

Kl∑
k=1

ylk max
(
0,m+ −

∥∥slk∥∥)2
+λ
(
1− ylk

)
max

(
0,
∥∥slk∥∥−m−)2 (19)

where ylk represents the ground truth for class k 618

at level l, m+ and m− are margin parameters that 619

define the desired bounds for capsule lengths, and 620

λ is a down-weighting coefficient for absent classes. 621
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Algorithm 1: Hierarchical Taxonomic-Aware Routing (HTR)
Input: Input capsules Zl, Taxonomy matrix T l, Level l, Previous level outputs Sl−1 (if l > 1), Number of routing

iterations R, Routing Hyper Parameters: τl, λT , βh, βl, µc

Output: Secondary capsule vectors Sl = {slk}
Kl
k=1

1 Procedure HTR(Zl, T
l, l, Sl−1, R):

2 forall k ∈ {1, ...,Kl} and i ∈ {1, ..., Nl} do ▷ Nl and Kl are the number capsules in Zl and Sl

3 bli,k = 0 ▷ Initialize routing logits

4 vli,k = W l
i,kz

l
i ▷ Generate votes for each pares

5 for r ← 0 to R do

6 forall k ∈ {1, ...,Kl} and i ∈ {1, ..., Nl} do

7 if l > 1 then /* Process higher-level routing with taxonomy and hierarchical information */

8 ml
i,k = TaxonomyGuidedRouting(T l, k, Sl−1) ▷ Taxonomy-guided mask for routing

9 hl
i,k = HierarchicalAgreement(vli,k, Sl−1) ▷ Hierarchcial Agreement

10 vli,k ← hl
i,k ▷ Update votes with hierarchical agreement

11 cli,k =
exp(τlbli,k·m

l
i,k)∑Kl

j=1 exp(τlbli,j ·ml
i,j)

12 else /* Process first-level routing without taxonomy */

13 cli,k =
exp(bli,k)∑Kl

j=1 exp(bli,j)

14 ŝlk = squash
(∑Nl

i=1 c
l
i,kv

l
i,k

)
15 bli,k ← bli,k +

〈
vli,k, ŝ

l
k

〉
▷ Update routing logits

16 if l > 1 then

17 Al = MHAttention(query = ŝlk, value = Sl−1, key = Sl−1) ▷ Standard multi-head attention [43]

18 else

19 Al = SelfAttention(ŝlk) ▷ For the first level standard self-attention [43] is used

20 slk =
∥∥ŝlk +Al

∥∥
n

▷ Normalization process[44] with default parameters [45]

21 return
{
slk
}Kl

k=1

22 Function TaxonomyGuidedRouting(T l, k, Sl−1):

23 sl−1
p(k) ∈ Sl−1 =

{
sl−1
j

}Kl−1

j=1
, ∀k ∈ {1, ...,Kl} ▷ sl−1

p(k) is the parent capsule of slk

24 m = (βh − βl) · σ
(
λT

(
T l
i,k

∥∥∥sl−1
p(k)

∥∥∥− µc

))
+ βl ▷ taxonomic mask

25 return m

26 Function HierarchicalAgreement(vli,k, Sl−1):

27 h = σ
(∑Kl−1

j=1 glk,j
〈
vli,k,W

l
hs

l−1
j

〉)
▷ sl−1

j ∈ Sl−1 = {sl−1
j }Kl−1

j=1

▷ W l
h ∈ Rdls×dl−1

s ; glk,j ∈ RKl×Kl−1 are learnable parameters

28 return h

To effectively handle the varying complexity622

across hierarchical levels, we introduce level-623

specific weights that account for the class distribu- 624

tion. These weights are initialized based on the rel- 625
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ative complexity of each level:626

ωinit
l =

1−Kl/
∑L

j=1 Kj∑L
i=1

(
1−Ki/

∑L
j=1 Kj

) (20)

where Kl represents the number of classes at level627

l, and L is the total number of hierarchical levels.628

The level weights are dynamically adjusted during629

training to adapt to the model’s performance:630

ω
(t)
l = (1− γ)

ρ
(t)
l∑L

i=1 ρ
(t)
i

(21)

where ρ
(t)
l =

(
1− acc(t)l

)
· ωinit

l represents the631

error-weighted initial weight at training iteration632

t, acc(t)l is the classification accuracy at level l, and633

γ is a hyperparameter that controls the balance be-634

tween initial and dynamic weighting.635

The final loss function combines the weighted636

losses from all hierarchical levels:637

Ltotal =

L∑
l=1

ω
(t)
l Ll (22)

This loss formulation serves multiple purposes638

in our architecture. First, the margin-based com-639

ponent encourages the network to learn discrimi-640

native capsule representations by enforcing sepa-641

ration between present and absent classes. Sec-642

ond, the hierarchical weighting scheme helps bal-643

ance the learning process across levels of varying644

complexity. Finally, the dynamic weight adjust-645

ment mechanism allows the network to adaptively646

focus on challenging levels while maintaining sta-647

ble training across the entire hierarchy. The loss648

function works in concert with the taxonomy-aware649

routing mechanism (Section 3.2) to ensure that the650

learned representations respect both the hierarchi-651

cal structure of the classes and the part-whole rela-652

tionships encoded in the capsule architecture.653

4. Experiments 654

In this section, we present a comprehensive 655

overview of the experiments conducted to eval- 656

uate the performance of HT-CapsNet in hierar- 657

chical multi-label classification tasks. In order 658

to rigorously assess the efficacy of our proposed 659

HT-CapsNet alongside other classifiers delineated 660

within existing scholarly literature, we have em- 661

ployed six distinct image datasets: Fashion-MNIST 662

[46], Marine-Tree [47], CIFAR-10 [48], CIFAR- 663

100 [48], Caltech-UCSD Birds-200-2011 (CUB- 664

200-2011) [49], and Stanford Cars [50]. More- 665

over, we have performed a comparative assess- 666

ment of the effectiveness of our proposed HT- 667

CapsNet in relation to the flat classification tech- 668

niques and hierarchical methods found in the lit- 669

erature. For the flat classification method, we uti- 670

lized the CapsNet framework described in [20], as 671

well as VGG16 in [51], VGG19 in [51], ResNet- 672

50 in [52], and EfficientNetB7 in [53]. These 673

flat classification techniques focus solely on the 674

most granular class levels and overlook the hi- 675

erarchical approaches. It is important to men- 676

tion that the baseline CapsNet in [20] employs a 677

capsule-based architecture combined with the dy- 678

namic routing algorithm. In terms of hierarchi- 679

cal classification methods, we have made com- 680

parisons with both convolution-based and capsule- 681

based networks. For the convolution-based cate- 682

gory, we considered the CNN-based branch hier- 683

archical classifier (B-CNN) from [16], the hierar- 684

chical convolutional neural network (H-CNN) in 685

[25], and the Condition-CNN method in [54]. For 686

the capsule-based approaches, we examined ML- 687
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CapsNet in [22], BUH-CapsNet in [23], the H-688

CapsNet approach in [13], and the HD-CapsNet689

method in [19]. The experiments are structured690

to rigorously evaluate the model’s ability to capture691

label correlations and uphold the hierarchical orga-692

nization of the data. We will detail the benchmark693

datasets utilized, the experimental setup, and the694

evaluation metrics employed to measure the per-695

formance of HT-CapsNet against existing state-of-696

the-art HMC methods. Through these experiments,697

we aim to demonstrate the robustness and superi-698

ority of our proposed method.699

4.1. Datasets700

As mentioned previously, we have utilized701

six separate image datasets characterized by di-702

verse class quantities and hierarchical relation-703

ships throughout our experimental framework. The704

specifics of the datasets are outlined below:705

The Fashion-MNIST dataset constitutes a collec-706

tion comprising 70, 000 grayscale images that rep-707

resent 10 distinct categories of fashion merchan-708

dise. This dataset is systematically partitioned into709

60, 000 images designated for training purposes and710

10, 000 images allocated for testing. Each image is711

characterized by dimensions of 28× 28 pixels. The712

dataset exhibits a balanced distribution, with each713

category containing 6, 000 images. The original714

dataset lacks any hierarchical arrangement. Conse-715

quently, we have established a hierarchical frame-716

work for the dataset by organizing the categories717

into two supplementary levels, as detailed in [25].718

The first level includes two main categories, while719

the second level contains six unique categories. In720

this hierarchical structure, the first level categories721

act as parent categories to the second level cat- 722

egories, and the second level categories serve as 723

parent categories to those at the next correspond- 724

ing level tied to the grouped categories. Thus, the 725

categories in the hierarchical arrangement create a 726

parent-child relationship dynamic. 727

The Marine-Tree dataset comprises a collection of 728

160, 000 color images depicting marine organisms, 729

categorized into tropical, temperate, and combined 730

subsets. This dataset offers a hierarchical architec- 731

ture consisting of five distinct levels. In the course 732

of our experiment, we have implemented the set- 733

tings pertaining to the combined subsets, which en- 734

compass 2 classes at the first level, 10 classes at the 735

second level, 38 classes at the third level, 46 classes 736

at the fourth level, and 60 classes at the fifth level. 737

For the purpose of ensuring consistency, we have 738

utilized the initial three levels of the hierarchical 739

structure when conducting comparisons with the 740

benchmark models, while employing all levels for 741

the HT-CapsNet. Additionally, we have standard- 742

ized the image dimensions to 64 × 64 pixels to fa- 743

cilitate simplicity. 744

In a similar manner, the CIFAR-10 and CIFAR-100 745

datasets represent two distinct collections compris- 746

ing 60, 000 coloured images categorized into 10 and 747

100 child classes, respectively, with CIFAR-100 be- 748

ing further classified into 20 parent categories. The 749

datasets are partitioned into 50, 000 images des- 750

ignated for training and 10, 000 images allocated 751

for testing purposes. Each image exhibits dimen- 752

sions of 32 × 32 pixels. In order to establish a 753

three-level hierarchical framework, we have incor- 754

porated 2 supplementary levels for the CIFAR-10 755

dataset and 1 supplementary level for the CIFAR- 756
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100 dataset, adhering to the methodology out-757

lined by [16]. Consequently, within the CIFAR-758

10 dataset, the initial supplementary level encom-759

passes 2 classes, while the second supplementary760

level comprises 7 classes; conversely, in the CIFAR-761

100 dataset, the initial supplementary level is con-762

stituted of 8 classes.763

The CUB-200-2011 dataset comprises color im-764

ages representing 200 distinct bird species, while765

the Stanford Cars dataset encompasses color im-766

ages of 196 unique automotive models. We have767

adhered to the hierarchical framework delineated768

in [27] for both datasets in order to implement a 3-769

level hierarchical organization, wherein the train-770

ing, validation, and testing subsets contain 5, 944,771

2, 897, and 2, 897 images for the CUB-200-2011772

dataset, and 8, 144, 4, 020, and 4, 021 images for773

the Stanford Cars dataset, respectively. The first,774

second, and third tiers comprise 39, 123, and 200775

categories for the CUB-200-2011 dataset and 13,776

113, and 196 categories, respectively, for the Stan-777

ford Cars dataset. In the course of our experiments,778

we have designated the image dimensions as 64×64779

pixels for both datasets.780

4.2. Experimental Setup781

In our experiments, we have consistently ap-782

plied a uniform approach to data preprocessing783

and augmentation across all datasets involved in784

our experiments. Specifically, we utilized the Stan-785

dard Scaler for data processing during the train-786

ing phase of all models. This method ensures that787

the features of the dataset are normalized, allow-788

ing for improved convergence during the training789

process. To enhance the diversity and robustness790

of our training data, we implemented the Mix- 791

Up data augmentation technique as introduced in 792

[55]. Mix-Up is a straightforward yet powerful ap- 793

proach that creates new training samples by per- 794

forming linear interpolation between pairs of ran- 795

domly selected instances from the training set. This 796

process involves calculating a weighted average of 797

the two chosen samples along with their corre- 798

sponding labels. The weights used for this inter- 799

polation are drawn from a beta distribution charac- 800

terized by a parameter, denoted as αm. In our ex- 801

periments, we fixed the value of αm at 0.2, which 802

has been shown to effectively balance the trade-off 803

between the original samples and the newly gener- 804

ated ones. 805

For model optimization, we employed the Adam 806

optimizer, which is known for its efficiency and ef- 807

fectiveness in handling sparse gradients. Addition- 808

ally, we incorporated an exponential decay learn- 809

ing rate scheduler to fine-tune the learning pro- 810

cess. Experimentally, we found that setting the ini- 811

tial learning rate to a higher value (0.001) strikes a 812

balance between rapid convergence and the risk of 813

overshooting the minimum. As training progresses, 814

fine-tuning the model parameters becomes crucial 815

to hone in on the optimal solution. To further refine 816

the training, we established a decay rate of 0.95, 817

which is applied after initial 10 epochs through- 818

out all our experiments. This systematic approach 819

to learning rate adjustment aids in stabilizing the 820

training process and enhances the model’s perfor- 821

mance over time. 822

As outlined earlier in Section 3.1, the feature 823

extraction module in our HT-CapsNet employs a 824

convolutional backbone network ϕ(· | θB) to ex- 825
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tract high-level features from the input data. In826

all experiments conducted, we utilized the Effi-827

cientNetB7 model, as detailed in [53], excluding828

the fully-connected layer located at the top of the829

network. Additionally, we carried out pre-training830

using ImageNet weights θB to set the initial pa-831

rameters for the backbone of the feature extrac-832

tor. Throughout all the experiments we conducted,833

we set the size of the primary capsules dlp to 8 for834

the initial level l = 1, and for levels l > 1, we835

specified dlp = dl−1
s to ensure compatibility dur-836

ing the concatenation phase. The size of the sec-837

ondary capsules dls was established at 64 for the838

first level l = 1, and then progressively reduced for839

the subsequent levels in line with the decay formula840

dls = 64×2−(l−1) for ∀l > 1 and dls ≥ 1. As a result,841

the number of primary capsules N l
p depended on842

the dimensions of the input image. For the purpose843

of training the HT-CapsNet model, we employed844

the taxonomy-aware routing algorithm as outlined845

in Section 3.2. The routing iterations, referred to846

as r, were uniformly set at 3 across all the hierar-847

chical tiers. The temperature parameter τl, as de-848

scribed in equation 12, was initialized to a value849

of 0.5. The high and low threshold parameters, βh850

and βl, were consistently maintained at 0.99 and851

0.1, respectively. The concentration parameter λT852

was designated a value of 0.5, and the central value853

µc was established as 0.5 in equation 13 throughout854

all experimental procedures. Furthermore, upper855

and lower margin values m+ and m− were set to856

0.9 and 0.1, respectively, for the margin-based loss857

function in equation 19. The down-weighting coef-858

ficient λ was maintained at 0.5 to balance the loss859

function. We obtained these vales through a series860

of preliminary experiments to ensure optimal per- 861

formance. 862

The foundational CapsNet architecture was 863

trained utilizing the identical hyperparameters de- 864

lineated in [20], wherein the primary capsules pos- 865

sess dimensions of 8 and the secondary capsules 866

exhibit dimensions of 16, employing dynamic rout- 867

ing for a total of 2 iterations across all datasets. 868

In a similar manner, the models VGG16, VGG19, 869

ResNet-50, and EfficientNetB7 were trained with 870

the identical hyperparameters outlined in their re- 871

spective research papers as described in [51], [52], 872

and [53]. In the context of the B-CNN architec- 873

ture, we have implemented the base-B model as 874

described in [16], which does not incorporate pre- 875

trained weights. All additional hyperparameters 876

were maintained in accordance with the specifi- 877

cations provided by Zhu and Bain in [16]. Like- 878

wise, we adopted the same hyperparameters as ar- 879

ticulated in [25] for the H-CNN model, as well as 880

those specified in [54] for the Condition-CNN ar- 881

chitecture. For the ML-CapsNet, BUH-CapsNet, H- 882

CapsNet and HD-CapsNet models, we employed 883

the identical hyperparameters as referenced in 884

[22], [23], [13], and [19], respectively, while en- 885

suring that the capsule dimensions remained con- 886

sistent with those of the HT-CapsNet model to facil- 887

itate a fair comparative analysis. Additionally, we 888

conducted extensive training of the models across 889

all datasets for a total of 200 epochs. This rigorous 890

approach ensures a fair and consistent comparison 891

of performance metrics, allowing us to evaluate the 892

effectiveness and robustness of each model under 893

uniform conditions. By maintaining this standard 894

across the various datasets, we aim to eliminate 895
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any potential biases that could arise from differing896

training durations or conditions, thereby enhancing897

the validity of our comparative analysis.898

Traditional evaluation metrics, including accu-899

racy, precision, recall, and F1-score, prove inade-900

quate for hierarchical classification models [1] as901

they overlook the hierarchical structure inherent in902

datasets. In complex class configurations, where903

instances may be classified across multiple levels,904

these metrics fail to accurately capture the model’s905

adeptness in navigating and rendering precise pre-906

dictions. The misclassification of labels at higher907

hierarchical levels is markedly more consequential908

than at lower levels. However, conventional met-909

rics equate all misclassification, thus neglecting the910

critical nature of hierarchical interrelations. To rig-911

orously evaluate the HT-CapsNet model, we em-912

ploy both traditional and hierarchical metrics. Be-913

yond standard per-level accuracy, we compute the914

hierarchical mean accuracy Âcc@k, which consid-915

ers the top-k predictions at each level. Specifi-916

cally, Âcc@1 represents the harmonic mean of ac-917

curacies across all levels considering only the top918

prediction, while Âcc@5 considers the top-5 predic-919

tions, providing insight into the model’s ability to920

rank correct labels highly even when the top pre-921

diction is incorrect. Additionally, we utilize spe-922

cialized hierarchical metrics including hierarchical923

precision (hP), recall (hR), F1-score (hF1), consis-924

tency (Cons), and exact match score (EM) follow-925

ing the footsteps of [13] to provide a comprehen-926

sive evaluation of the model’s performance in hier-927

archical classification tasks. Hierarchical Precision928

quantifies the ratio of accurately predicted labels to929

all labels predicted, while Hierarchical Recall mea-930

sures the proportion of correctly predicted true la- 931

bels against all true labels. The Hierarchical F1- 932

score integrates these metrics into a singular eval- 933

uative measure, encapsulating the model’s efficacy 934

in hierarchical classification contexts. Similarly, the 935

Consistency score serves as a metric indicating the 936

extent to which test instances align with the hier- 937

archical structure, independent of their accuracy. 938

This score is represented as a percentage, reflecting 939

the proportion of aligned test instances. The Ex- 940

act Match score assesses the percentage of predic- 941

tions that entirely correspond to the ground truth 942

at each hierarchical level, offering insights into the 943

accuracy with which the predictions conform to the 944

actual dataset. 945

4.3. Results 946

Now we turn our attention to the outcomes pro- 947

duced by our proposed HT-CapsNet model in re- 948

lation to the current standard hierarchical multi- 949

label classification techniques. We provide an 950

in-depth examination of the performance metrics 951

achieved across the six benchmark datasets, em- 952

phasizing the model’s proficiency in effectively cap- 953

turing hierarchical relationships and label corre- 954

lations. We begin by assessing the performance 955

of the HT-CapsNet model against the basic flat 956

baseline models, namely CapsNet, VGG16, VGG19, 957

ResNet-50, and EfficientNetB7, before moving on 958

to a comparative assessment with the hierarchical 959

models, which include B-CNN, H-CNN, Condition- 960

CNN, ML-CapsNet, BUH-CapsNet, H-CapsNet, and 961

HD-CapsNet. Following this, we evaluate the per- 962

formance of HD-CapsNet in comparison to its ab- 963

lation versions, as outlined in Section 4.4. The 964
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results of our experiments are presented in Ta-965

bles 1, 2, and 3, which provide a comprehensive966

overview of the performance metrics achieved by967

the HT-CapsNet model and the benchmark mod-968

els across the six benchmark datasets. Our exper-969

imental results demonstrate consistently superior970

performance of HT-CapsNet across all evaluated971

datasets, with particularly notable improvements in972

complex fine-grained classification tasks. The per-973

formance advantages become more pronounced as974

the hierarchical structure deepens and the classifi-975

cation task becomes more challenging.976

HT-CapsNet exhibits robust performance across977

all hierarchical levels, with the most significant im-978

provements observed in deeper levels where tra-979

ditional methods typically struggle. This pattern980

suggests that our taxonomy-aware routing mech-981

anism effectively leverages hierarchical relation-982

ships to maintain classification accuracy even at983

finer granularities. The performance gap between984

HT-CapsNet and baseline models widens as task985

complexity increases, indicating better scalability986

to challenging scenarios. In studies involving less987

complex datasets such as Fashion-MNIST, while HT-988

CapsNet demonstrates certain enhancements, the989

extent of the advantage remains relatively limited990

owing to the straightforward hierarchical architec-991

ture, as evidenced in Table 1. Conversely, as the992

complexity of the dataset escalates, the advantages993

conferred by our methodology become increasingly994

evident. In the case of Marine-tree, the perfor-995

mance benefits augment significantly at deeper hi-996

erarchical levels, indicating a superior capacity for997

managing intricate hierarchical relationships.998

The results on the CIFAR datasets presented in999

Table 2 reveal a similar trend, with CIFAR-100’s 1000

more complex hierarchy highlighting HT-CapsNet’s 1001

superior hierarchical learning capabilities. The 1002

most striking improvements appear in fine-grained 1003

classification challenges for the CUB-200-2011 and 1004

Stanford Cars datasets, as illustrated in Table 3. 1005

Here, HT-CapsNet significantly outperforms exist- 1006

ing methods, showcasing its ability to capture sub- 1007

tle hierarchical relationships and fine-grained dis- 1008

tinctions. This pattern suggests that our taxonomy- 1009

aware routing mechanism is particularly adept at 1010

differentiating nuanced features while preserving 1011

hierarchical consistency. 1012

The hierarchical metrics reveal several interest- 1013

ing patterns. First, HT-CapsNet maintains higher 1014

consistency scores across all datasets, indicating 1015

better preservation of hierarchical relationships. 1016

The improvements in hierarchical precision and re- 1017

call become more pronounced as the taxonomy be- 1018

comes more complex, suggesting that our model 1019

better captures intricate class relationships. The 1020

exact match scores show particularly significant 1021

improvements in fine-grained datasets, indicating 1022

better complete path prediction capability. For 1023

traditional flat classification approaches (VGG16, 1024

VGG19, ResNet-50, EfficientNetB7, and CapsNet), 1025

we used the predictions at the finest level to derive 1026

predictions for parent levels, as these models do not 1027

inherently utilize the hierarchical structure of the 1028

taxonomy [1]. While this approach ensures predic- 1029

tion consistency by definition, it results in substan- 1030

tially lower overall performance across all hierar- 1031

chical metrics, highlighting the importance of ex- 1032

plicitly modelling hierarchical relationships during 1033

the learning process. 1034
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Table 1: Performance evaluation on Fashion-MNIST [46] and Marine-tree [47] datasets, comparing HT-CapsNet against baseline meth-

ods. The results present accuracy at different hierarchical levels and include hierarchical metrics. The level-wise accuracy demonstrates

a progressive improvement as the classification progresses from coarse to fine-grained levels. Meanwhile, the hierarchical metrics eval-

uate the model using hierarchical information throughout the classification process. The best and second-best results are highlighted

in ■ and ■ colors, respectively.

Level Wise Accuracy (%) Hierarchical Metrices (%)
Dataset Models

Level 1 Level 2 Level 3 Âcc @ 1 Âcc @ 5 hP hR hF1 Cons EM

VGG16 [51] 99.76 94.96 89.78 94.66 98.31 94.83 96.83 95.82 – 89.78

VGG19 [51] 99.64 93.25 89.22 93.84 96.35 93.14 95.54 94.32 – 89.22

ResNet-50 [52] 99.57 95.23 90.31 94.89 97.49 95.04 95.04 95.04 – 90.31

EfficientNetB7 [53] 98.90 91.92 84.91 91.55 95.92 91.91 91.91 91.91 – 84.91

CapsNet [20] 99.62 95.89 91.90 95.70 97.80 91.90 91.90 91.90 – 91.90

B-CNN [16] 99.63 95.44 92.33 95.71 99.89 95.77 96.48 96.07 96.73 90.44

H–CNN [25] 99.79 96.76 93.16 96.49 99.95 96.55 96.79 96.65 98.88 92.58

Condition-CNN [54] 99.78 96.65 93.42 96.55 99.33 96.65 96.84 96.73 99.16 92.85

ML-CapsNet [22] 99.70 95.89 92.10 95.80 99.74 95.85 96.19 95.99 98.35 91.31

BUH-CapsNet [23] 99.89 97.53 94.75 97.34 99.46 97.38 97.41 97.40 99.80 94.68

H-CapsNet [13] 99.73 97.06 93.95 96.86 99.86 96.86 97.36 97.07 97.60 92.69

HD-CapsNet [19] 99.92 97.78 94.83 97.47 99.44 97.51 97.54 97.52 99.84 94.70

HT-CapsNet 99.93 97.79 94.98 97.52 99.65 98.01 98.26 98.14 99.90 95.90

HT-CapsNet† 97.92 92.72 88.94 93.05 96.66 95.07 95.32 95.19 97.90 90.89

Fashion-

MNIST

HT-CapsNet‡ 96.45 90.53 86.38 90.93 91.83 90.32 90.55 90.43 96.45 88.77

VGG16[51] 88.81 75.71 46.50 65.25 80.00 73.67 73.67 73.67 – 46.50

VGG19 [51] 88.92 76.90 48.12 66.62 80.09 73.82 73.82 73.82 – 48.12

ResNet-50 [52] 87.40 73.05 50.76 66.92 77.19 70.40 70.40 70.40 – 50.76

EfficientNetB7 [53] 86.70 71.55 48.01 64.74 75.38 68.75 68.75 68.75 – 48.01

CapsNet [20] 86.36 70.34 46.73 63.56 74.52 46.73 46.73 46.73 – 46.73

B-CNN [16] 88.28 75.88 54.48 69.99 93.22 72.69 77.03 74.42 80.63 47.29

H–CNN [25] 88.25 75.14 49.99 67.20 90.73 70.66 75.21 72.47 78.13 44.72

Condition-CNN [54] 88.75 76.64 53.99 70.03 92.14 72.91 76.46 74.34 82.66 49.10

ML-CapsNet [22] 86.62 68.21 37.06 56.40 76.24 62.91 66.79 64.45 79.92 34.30

BUH-CapsNet [23] 88.48 76.49 52.33 68.99 92.39 72.35 73.17 74.07 91.78 52.53

H-CapsNet [13] 88.38 77.49 52.44 69.30 95.81 72.93 80.97 76.74 83.07 54.85

HD-CapsNet [19] 89.88 77.50 57.15 72.24 92.15 75.02 76.04 75.44 94.47 55.59

HT-CapsNet 90.76 81.19 61.12 75.58 93.67 77.49 78.26 77.80 95.88 60.19

HT-CapsNet† 85.12 74.18 53.37 68.24 88.98 73.62 74.35 73.91 90.88 54.19

Marine-

tree

HT-CapsNet‡ 83.77 71.20 50.54 65.54 87.11 72.07 72.78 72.36 88.88 52.19

† Denotes the HT-CapsNet without the taxonomy guided routing (taxonomy-based masking) in the routing process.
‡ Denotes the HT-CapsNet without the hierarchcial agreement between the capsules in different levels of the taxonomy.

The t-SNE visualizations in Figure 3 provide com-1035

pelling evidence of HT-CapsNet’s superior represen-1036

tation learning capabilities compared to baseline 1037

models. The visualizations elucidate several piv- 1038
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Table 2: Performance evaluation on CIFAR-10 [48] and CIFAR-100 [48] datasets, comparing HT-CapsNet against baseline methods.

The results present accuracy at different hierarchical levels and include hierarchical metrics. The level-wise accuracy demonstrates a

progressive improvement as the classification progresses from coarse to fine-grained levels. Meanwhile, the hierarchical metrics evalu-

ate the model using hierarchical information throughout the classification process. The best and second-best results are highlighted in

■ and ■ colors, respectively.

Level Wise Accuracy (%) Hierarchical Metrices (%)
Dataset Models

Level 1 Level 2 Level 3 Âcc @ 1 Âcc @ 5 hP hR hF1 Cons EM

VGG16 [51] 96.22 86.89 75.36 85.30 95.42 89.49 90.49 89.99 – 75.36

VGG19 [51] 95.58 87.13 76.45 85.67 80.59 89.30 89.31 89.31 – 76.45

ResNet-50 [52] 92.00 72.88 65.01 75.05 89.20 76.63 76.63 76.63 – 65.01

EfficientNetB7 [53] 86.23 52.28 41.68 54.83 81.18 60.06 60.06 60.06 – 41.68

CapsNet [20] 93.19 76.53 70.42 78.95 90.60 70.42 70.42 70.42 – 70.42

B-CNN [16] 96.08 87.13 84.54 88.98 96.40 89.26 91.48 90.18 89.72 78.99

H–CNN [25] 96.01 86.71 81.29 87.59 99.49 87.89 89.90 88.72 90.21 76.88

Condition-CNN [54] 95.86 83.78 79.74 85.94 99.62 86.56 88.36 87.30 91.30 75.30

ML-CapsNet [22] 97.95 90.03 86.78 91.35 99.16 91.38 92.24 91.74 95.47 85.24

BUH-CapsNet [23] 98.72 93.81 90.84 94.35 99.63 94.41 94.59 94.48 99.06 90.56

H-CapsNet [13] 97.61 92.58 91.12 93.69 99.28 93.92 94.60 94.74 91.24 86.65

HD-CapsNet [19] 98.79 94.28 91.22 94.66 99.08 94.74 94.89 94.80 99.18 90.95

HT-CapsNet 99.10 95.20 91.80 95.27 99.40 95.64 95.73 95.68 99.45 91.50

HT-CapsNet† 96.17 89.27 84.75 89.82 95.42 91.81 91.90 91.86 96.45 85.50

CIFAR-10

HT-CapsNet‡ 94.80 87.24 82.87 88.03 93.44 89.90 89.99 89.94 94.44 83.39

VGG16 [51] 71.71 59.14 37.67 52.26 63.11 58.51 58.51 58.51 – 37.67

VGG19 [51] 71.52 60.15 38.41 52.97 61.69 59.33 58.33 58.83 – 38.41

ResNet-50 [52] 58.26 45.11 33.82 43.54 52.43 45.73 45.73 45.73 – 33.82

EfficientNetB7 [53] 51.35 38.13 27.65 36.64 46.03 39.04 39.04 39.04 – 27.65

CapsNet [20] 56.53 45.06 34.93 43.79 53.17 34.93 34.93 34.93 – 34.93

B-CNN [16] 71.08 61.99 56.38 62.58 90.25 64.41 73.42 67.93 56.87 38.90

H–CNN [25] 74.00 67.27 51.40 62.72 88.82 64.23 71.67 67.14 60.27 40.49

Condition-CNN [54] 73.38 61.27 47.91 59.03 86.32 61.07 67.18 63.45 65.01 39.50

ML-CapsNet [22] 78.73 70.15 60.18 68.85 89.81 69.50 75.65 71.89 68.92 50.29

BUH-CapsNet [23] 86.03 77.83 64.87 75.21 92.40 76.04 77.87 76.75 89.81 62.53

H-CapsNet [13] 80.31 75.68 65.74 73.39 90.08 76.93 78.65 77.12 65.25 53.92

HD-CapsNet [19] 86.93 79.31 66.38 76.58 91.00 77.43 79.20 78.12 89.80 64.41

HT-CapsNet 87.17 80.22 67.58 77.45 93.41 78.55 80.33 79.43 91.25 66.65

HT-CapsNet† 80.73 72.44 58.44 69.28 87.81 73.83 75.51 74.66 85.20 59.59

CIFAR-100

HT-CapsNet‡ 77.35 69.27 55.37 66.05 85.00 71.48 73.10 72.28 82.25 56.64

† Denotes the HT-CapsNet without the taxonomy guided routing (taxonomy-based masking) in the routing process.
‡ Denotes the HT-CapsNet without the hierarchcial agreement between the capsules in different levels of the taxonomy.

otal insights. First, HT-CapsNet exhibits clearer sep-1039

aration between transport and animal categories1040

at Level-1, with more compact and well-defined1041

clusters. This suggests better high-level feature 1042

discrimination. Second, at Level-2, HT-CapsNet 1043

maintains clear boundaries between sub-categories 1044
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Table 3: Performance evaluation on Caltech-UCSD Birds-200-2011 (CUB-200-2011) [49] and Stanford Cars [50] datasets, comparing

HT-CapsNet against baseline methods. The results present accuracy at different hierarchical levels and include hierarchical metrics.

The level-wise accuracy demonstrates a progressive improvement as the classification progresses from coarse to fine-grained levels.

Meanwhile, the hierarchical metrics evaluate the model using hierarchical information throughout the classification process. The best

and second-best results are highlighted in ■ and ■ colors, respectively.

Level Wise Accuracy (%) Hierarchical Metrices (%)
Dataset Models

Level 1 Level 2 Level 3 Âcc @ 1 Âcc @ 5 hP hR hF1 Cons EM

VGG16 [51] 26.74 15.61 10.03 15.61 19.83 17.79 17.79 17.79 – 10.03

VGG19 [51] 23.07 14.52 8.52 13.06 20.03 17.03 17.03 17.03 – 8.52

ResNet-50 [52] 25.40 12.20 7.62 11.87 16.16 15.07 15.07 15.07 – 7.62

EfficientNetB7 [53] 15.85 5.58 2.89 5.10 9.30 8.11 8.11 8.11 – 2.89

CapsNet [20] 17.67 8.04 4.59 7.52 11.87 4.19 4.59 4.00 – 4.59

B-CNN [16] 34.00 17.60 13.15 18.49 43.64 21.65 31.49 25.27 14.74 3.24

H–CNN [25] 32.43 16.02 6.27 11.87 32.81 17.11 24.94 19.98 12.92 2.21

Condition-CNN [54] 38.97 20.88 13.37 20.22 54.17 23.35 28.04 25.97 23.47 7.58

ML-CapsNet [22] 35.01 20.30 13.75 19.92 37.79 23.05 29.14 25.35 25.26 8.55

BUH-CapsNet [23] 37.76 20.95 13.36 20.13 42.44 23.26 29.21 25.52 26.21 7.90

H-CapsNet [13] 31.76 21.59 14.13 20.19 47.03 23.13 30.12 25.94 13.63 5.80

HD-CapsNet [19] 40.42 21.61 14.39 21.35 40.18 23.47 30.33 26.01 27.34 8.63

HT-CapsNet 58.06 42.49 30.67 40.89 67.75 43.13 48.00 45.03 59.13 24.09

HT-CapsNet† 48.45 32.42 20.44 29.88 62.33 39.68 44.16 41.43 49.13 16.08

CUB-200-

2011

HT-CapsNet‡ 43.05 27.74 15.13 23.93 58.95 37.53 41.76 39.18 44.13 11.08

VGG16 [51] 21.67 4.94 3.33 5.46 9.24 9.98 9.98 9.98 – 3.33

VGG19 [51] 23.53 5.84 3.84 6.33 5.02 10.74 10.74 10.74 – 3.84

ResNet-50 [52] 23.49 6.38 4.37 7.01 10.85 11.41 11.41 11.41 – 4.37

EfficientNetB7 [53] 23.83 4.79 2.83 4.97 8.75 10.48 10.48 10.48 – 2.83

CapsNet [20] 23.75 6.44 4.58 7.21 11.27 4.05 4.58 4.08 – 4.58

B-CNN [16] 34.94 9.05 9.38 12.21 32.11 18.17 27.96 21.78 7.44 1.62

H–CNN [25] 33.49 10.55 6.83 11.07 28.91 16.78 25.55 20.02 9.14 1.56

Condition-CNN [54] 43.07 16.14 14.00 19.16 45.05 24.91 35.48 28.87 15.24 4.49

ML-CapsNet [22] 41.31 14.75 10.50 16.02 33.65 21.27 28.40 23.97 22.86 5.26

BUH-CapsNet [23] 43.70 14.97 9.52 15.41 34.21 21.61 27.27 23.78 28.12 6.12

H-CapsNet [13] 33.85 13.73 11.96 16.13 35.15 20.60 31.60 24.62 7.66 2.54

HD-CapsNet [19] 53.34 19.52 14.05 21.26 41.86 26.73 35.69 29.73 29.15 8.13

HT-CapsNet 67.30 41.24 32.52 42.95 72.04 46.75 49.92 48.02 75.15 28.08

HT-CapsNet† 57.34 31.42 22.75 32.18 65.99 42.82 45.72 43.99 65.14 20.07

Stanford

Cars

HT-CapsNet‡ 52.42 26.21 17.42 26.17 62.02 40.25 42.98 41.35 60.14 15.07

† Denotes the HT-CapsNet without the taxonomy guided routing (taxonomy-based masking) in the routing process.
‡ Denotes the HT-CapsNet without the hierarchcial agreement between the capsules in different levels of the taxonomy.

while preserving the overall hierarchical structure.1045

Notably, related categories (e.g., sky, water, and1046

road under transport) show appropriate proxim- 1047

ity while maintaining distinct clusters. Third, at 1048
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(a) HT-CapsNet (b) HD-CapsNet (c) ML-CapsNet (d) H-CNN (e) B-CNN

Le
ve

l-
1

Le
ve

l-
2

Le
ve

l-
3

Level-1: Transport(•), Animal(•)

Level-2: Sky(•), Water(•), Road(•), Bird(•), Reptile(•), Pet(•), Medium(•)

Level-3: Airplane(•), Automobile(•), Bird(•), Cat(•), Deer(•), Dog(•), Frog(•), Horse(•), Ship(•), Truck(•)

Figure 3: t-SNE visualization of learned feature representations by HT-CapsNet and baseline methods across hierarchical levels. Each

point represents a sample, colored according to its ground truth label at the corresponding level. Level-1 shows the coarse binary

separation between transport and animal categories. Level-2 demonstrates mid-level categorization into seven subcategories. Level-

3 displays fine-grained separation into ten specific classes. HT-CapsNet achieves clearer class separation and more coherent cluster

formation compared to baseline methods, particularly at finer levels, while maintaining hierarchical relationships between levels.

the finest level (Level-3), HT-CapsNet demonstrates1049

superior preservation of hierarchical relationships1050

while maintaining fine-grained discrimination. The1051

visualization shows clear sub-clusters that respect1052

parent-child relationships, with smoother transi-1053

tions between related categories compared to base-1054

line methods.1055

Furthermore, across all levels, HT-CapsNet pro-1056

duces more compact and well-separated clusters1057

compared to baseline models, where clusters of-1058

ten show significant overlap or diffuse boundaries.1059

This visual evidence aligns with the quantitative 1060

improvements in classification metrics. The pro- 1061

gressive refinement from Level-1 to Level-3 in HT- 1062

CapsNet’s visualizations shows clear hierarchical 1063

structure preservation, with child categories prop- 1064

erly nested within their parent category spaces. 1065

This visual coherence is less evident in base- 1066

line models, particularly in H-CNN and B-CNN, 1067

where hierarchical relationships become increas- 1068

ingly ambiguous at deeper levels. Notably, all 1069

capsule-based models (HT-CapsNet, HD-CapsNet, 1070
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and ML-CapsNet) demonstrate superior cluster sep-1071

aration and hierarchical preservation compared1072

to convolution-based approaches (H-CNN and B-1073

CNN), which aligns with their better quantita-1074

tive performance across all datasets. These visu-1075

alization patterns support the quantitative results1076

and provide intuitive evidence of HT-CapsNet’s im-1077

proved capability in learning hierarchically-aware1078

representations while maintaining discriminative1079

power at all levels of granularity.1080

4.4. Ablation Study1081

To validate the effectiveness of each key compo-1082

nent in HT-CapsNet, we conducted extensive abla-1083

tion studies by removing or modifying critical el-1084

ements of our methods and design choices. The1085

studies focus on three main aspects: the impact of1086

taxonomy-guided routing, the effect of hierarchical1087

agreement mechanisms, and the influence of hier-1088

archical depth on model performance. All ablation1089

experiments were performed across all datasets,1090

with detailed results reported in Tables 1, 2, and 3.1091

We first examined the effect of remov-1092

ing the taxonomy-guided routing mechanism1093

(HT-CapsNet†), which eliminates the taxonomic1094

mask ml
i,k from the routing process while main-1095

taining other components. This modification1096

results in standard routing coefficients that don’t1097

explicitly consider class hierarchy relationships.1098

The performance degradation is notable across1099

all datasets, with the impact becoming more1100

pronounced in complex hierarchical scenarios.1101

On fine-grained datasets like CUB-200-2011 and1102

Stanford Cars, the absence of taxonomy guidance1103

leads to substantial drops in hierarchical metrics,1104

particularly in consistency scores. This degradation 1105

pattern suggests that taxonomic information plays 1106

a crucial role in guiding the routing process toward 1107

hierarchically meaningful representations. 1108

Similarly, we conducted an ablation study to 1109

evaluate the impact of the hierarchical agreement 1110

mechanism in HT-CapsNet. The modified model 1111

(HT-CapsNet‡) removes the hierarchical agreement 1112

component while all the other components remain 1113

intact. This modification removes the agreement 1114

computation between consecutive levels (hl
i,k) that 1115

is defined in Algorithm 1, which normally ensures 1116

that routing decisions at each level are influenced 1117

by the predictions from previous levels. The ab- 1118

lation of this mechanism leads to significant per- 1119

formance degradation across all datasets, with the 1120

most pronounced effects seen in hierarchical con- 1121

sistency scores and exact match rates. The impact is 1122

particularly evident in complex datasets like CUB- 1123

200-2011 and Stanford Cars, where the model’s 1124

ability to maintain coherent predictions across dif- 1125

ferent levels is notably diminished. This degrada- 1126

tion pattern suggests that the hierarchical agree- 1127

ment mechanism plays a crucial role in ensuring 1128

that the learned representations at each level are 1129

properly influenced by and consistent with the pre- 1130

dictions from previous levels. 1131

To understand how the number of hierarchical 1132

levels affects model performance, we conducted ex- 1133

periments varying the hierarchy depth from 2 to 5 1134

levels on the Marine-tree dataset as a representa- 1135

tive example. The results in Table 4 demonstrate 1136

the impact of hierarchical depth on classification 1137

accuracy at different levels. The results reveal that 1138

increasing the number of hierarchical levels consis- 1139
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Table 4: Analysis of hierarchical depth impact on model perfor-

mance using the Marine-tree dataset. Results show how clas-

sification accuracy at each level (l=1 to l=5) changes as more

hierarchical levels are incorporated into the model. The pro-

gressive improvement in accuracy across all levels demonstrates

the benefits of deeper hierarchical structures in capturing multi-

level semantic relationships. The absolute best results, achieved

with all five levels, are marked in bold, highlighting the advan-

tage of utilizing complete hierarchical information.

# Hierarchical

Levels

Accuracy per level (%)

l=1 l=2 l=3 l=4 l=5

2 89.89 78.59 – – –

3 90.76 81.19 61.12 – –

4 90.97 81.60 61.70 56.75 –

5 91.21 81.90 62.02 57.12 55.05

tently improves performance across all existing lev-1140

els, with optimal results achieved using all five lev-1141

els. This pattern suggests that deeper hierarchical1142

structures provide valuable contextual information1143

that benefits the entire classification process. The1144

improvements are more pronounced at intermedi-1145

ate levels compared to the top level, indicating that1146

additional hierarchical context helps refine mid-1147

level representations without compromising high-1148

level classification performance. Moreover, even as1149

deeper levels are added, the model maintains ro-1150

bust performance on higher levels, demonstrating1151

that increased architectural complexity does not1152

compromise performance on coarser classifications.1153

These ablation studies validate our architec-1154

tural choices and demonstrate that both taxonomy-1155

guided routing and hierarchical agreement mecha-1156

nisms are essential for effective hierarchical learn-1157

ing. The results also support our decision to1158

utilise full hierarchical structures when available,1159

as deeper hierarchies provide valuable contextual1160

information that benefits the entire classification 1161

process. Moreover, the studies highlight the com- 1162

plementary nature of our key components, showing 1163

that their combination produces synergistic effects 1164

that enable more effective hierarchical representa- 1165

tion learning. 1166

4.5. Computational Performance Analysis 1167

To assess the computational overhead intro- 1168

duced by our taxonomy-aware routing mechanism, 1169

we conducted extensive performance benchmark- 1170

ing by comparing HT-CapsNet with standard dy- 1171

namic routing [20]. Table 5 presents a com- 1172

prehensive analysis across different datasets and 1173

routing iterations, measuring floating point oper- 1174

ations (FLOP), training time metrics, and infer- 1175

ence performance. The analysis reveals that the in- 1176

troduction of taxonomy-aware routing introduces 1177

a variable computational overhead depending on 1178

the dataset complexity. For simpler datasets like 1179

Fashion-MNIST, the increase in FLOPs is minimal, 1180

at approximately 0.12%. However, for complex 1181

fine-grained datasets such as CUB-200-2011, the 1182

increase reaches 38.32%. This scaling pattern di- 1183

rectly correlates with the complexity of taxonomic 1184

relationships present in these datasets, reflecting 1185

the additional computational work required to 1186

maintain hierarchical consistency during routing. 1187

Training efficiency analysis shows that the av- 1188

erage epoch time experiences moderate increases 1189

compared to standard routing, ranging from 1190

3% to 21% depending on the dataset size and 1191

complexity. The larger datasets, particularly those 1192

with complex hierarchical structures, show higher 1193

computational overhead during training. How- 1194
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Table 5: Computational performance comparing proposed taxonomy-aware routing with standard dynamic routing [20] across different

datasets and routing iterations. Metrics include Floating Point Operations (FLOPs), training time, inference latency, and throughput.

Arrows (↑/↓) indicate performance changes (increase/decrease) relative to standard routing.

Dataset
Routing

Iterations
FLOPs

Avg Epoch

Time (s)

Avg Sample

Time (mS)

Avg Latency

(mS)

Throughput

(samples/s)

Fashion-

MNIST

2 241.96 M ↑ 0.12% 9.53 ↑ 4.26% 4.83 ↑ 5.53% 2.79 ↑ 2.00% 358.20 ↓ 1.96%

3 242.1 M ↑ 0.12% 9.52 ↑ 2.36% 4.82 ↑ 2.95% 2.83 ↓ 0.84% 353.65 ↑ 0.85%

4 242.24 M ↑ 0.12% 9.58 ↑ 4.63% 4.87 ↑ 5.31% 2.81 ↑ 1.86% 355.42 ↓ 1.82%

5 242.39 M ↑ 0.12% 9.66 ↑ 5.89% 4.89 ↑ 7.53% 2.78 ↑ 4.77% 359.74 ↓ 4.55%

Marine-

tree

2 922.81 M ↑ 6.97% 37.07 ↑ 5.88% 6.91 ↑ 17.59% 3.50 ↑ 12.66% 285.93 ↓ 11.23%

3 925.81 M ↑ 6.98% 37.07 ↑ 10.53% 6.91 ↑ 29.73% 3.50 ↑ 21.31% 285.93 ↓ 17.57%

4 928.8 M ↑ 6.99% 38.75 ↑ 6.87% 8.40 ↑ 15.22% 4.15 ↑ 6.37% 241.07 ↓ 5.99%

5 931.79 M ↑ 7.00% 39.91 ↑ 6.94% 9.14 ↑ 13.90% 4.35 ↑ 7.84% 229.96 ↓ 7.27%

CIFAR-10

2 242.15 M ↑ 0.14% 12.34 ↑ 3.40% 4.81 ↑ 3.26% 2.46 ↑ 3.76% 380.12 ↓ 4.07%

3 242.3 M ↑ 0.14% 12.62 ↑ 0.61% 4.79 ↑ 5.45% 2.66 ↑ 4.45% 375.59 ↓ 4.26%

4 242.44 M ↑ 0.14% 12.47 ↑ 2.78% 4.83 ↑ 5.47% 2.78 ↑ 3.87% 359.15 ↓ 3.73%

5 242.59 M ↑ 0.14% 12.49 ↑ 3.97% 4.88 ↑ 5.88% 3.12 ↑ 2.92% 320.15 ↓ 2.21%

CIFAR-100

2 257.53 M ↑ 3.10% 12.58 ↑ 4.14% 4.93 ↑ 5.81% 2.96 ↑ 5.46% 349.95 ↓ 4.11%

3 258.35 M ↑ 3.11% 12.58 ↑ 5.02% 4.92 ↑ 8.11% 3.09 ↑ 2.78% 337.48 ↓ 4.99%

4 259.18 M ↑ 3.11% 12.72 ↑ 5.08% 5.00 ↑ 8.12% 3.16 ↑ 1.94% 323.89 ↓ 1.19%

5 260 M ↑ 3.11% 13.09 ↑ 2.45% 5.07 ↑ 7.52% 3.19 ↑ 2.29% 286.20 ↓ 7.03%

CUB-200-

2011

2 1.15 G ↑ 38.32% 31.38 ↑ 21.20% 9.90 ↑ 34.84% 5.07 ↑ 163.50% 197.30 ↓ 15.68%

3 1.16 G ↑ 37.95% 34.13 ↑ 15.47% 11.30 ↑ 29.72% 5.43 ↑ 21.66% 184.30 ↓ 17.80%

4 1.17 G ↑ 37.59% 36.06 ↑ 17.10% 12.64 ↑ 26.57% 5.90 ↑ 19.97% 169.60 ↓ 16.64%

5 1.18 G ↑ 37.24% 38.45 ↑ 31.86% 14.02 ↑ 24.23% 6.48 ↑ 18.21% 154.29 ↓ 15.40%

Stanford

Cars

2 1.08 G ↑ 32.23% 55.25 ↑ 10.11% 8.79 ↑ 34.65% 4.39 ↑ 18.31% 227.56 ↓ 15.48%

3 1.09 G ↑ 32.05% 59.11 ↑ 7.28% 9.70 ↑ 35.05% 4.56 ↑ 24.56% 219.29 ↓ 19.72%

4 1.09 G ↑ 31.87% 57.77 ↑ 12.83% 10.56 ↑ 28.46% 4.92 ↑ 21.77% 203.28 ↓ 17.88%

5 1.1 G ↑ 31.70% 61.79 ↑ 9.91% 11.42 ↑ 26.73% 5.25 ↑ 21.03% 190.31 ↓ 17.38%

• All computational measurements were performed on a single NVIDIA A100 GPU with 40GB memory.
• Training metrics (average epoch time and sample time) were calculated using 50 batches per epoch with batch size of 32. Inference metrics (latency

and throughput) were measured using 2, 000 randomly sampled test examples.

ever, this additional computational cost is justi-1195

fied by the significant improvements in classifica-1196

tion performance, especially in scenarios involv-1197

ing complex hierarchical relationships. The train-1198

ing time scaling remains predictable and manage-1199

able across different dataset sizes. Examining infer- 1200

ence performance metrics reveals interesting pat- 1201

terns in model deployment characteristics. While 1202

HT-CapsNet shows slightly increased latency across 1203

all configurations, the impact on throughput re- 1204

26

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5127434

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



mains within acceptable bounds. For example, with1205

5 routing iterations on CUB-200-2011, the most1206

complex dataset in our experiments, the through-1207

put reduction is only 15.40% compared to stan-1208

dard routing. This relatively modest decrease in in-1209

ference speed suggests that our method maintains1210

practical utility in real-world applications despite1211

its increased sophistication.1212

The relationship between computational require-1213

ments and routing iterations demonstrates efficient1214

algorithmic scaling. Our measurements indicate1215

that the computational overhead scales approxi-1216

mately linearly with the number of routing itera-1217

tions, suggesting good algorithmic efficiency. More1218

importantly, the relative performance impact re-1219

mains stable across different iteration counts, indi-1220

cating robust scaling behavior that maintains pre-1221

dictable performance characteristics as the rout-1222

ing complexity increases. Datasets with complex1223

hierarchical structures, particularly CUB-200-20111224

and Stanford Cars, show more pronounced com-1225

putational requirements, with FLOPs increasing by1226

31−38%. This additional computation directly con-1227

tributes to the model’s superior hierarchical learn-1228

ing capabilities, as evidenced by the performance1229

improvements shown in Tables 1, 2, and 3. The1230

relationship between computational cost and per-1231

formance improvement appears to be particularly1232

favorable for these complex tasks, where the bene-1233

fits of improved hierarchical learning outweigh the1234

increased computational demands.1235

The computational analysis demonstrates that1236

while HT-CapsNet introduces additional computa-1237

tional overhead compared to standard routing ap-1238

proaches, this cost scales predictably with problem1239

complexity and remains reasonable relative to the 1240

achieved performance improvements. These find- 1241

ings indicate that the trade-off between computa- 1242

tional cost and classification performance is par- 1243

ticularly favorable for complex hierarchical tasks, 1244

where the benefits of improved hierarchical learn- 1245

ing justify the modest increase in computational re- 1246

quirements. 1247

5. Discussion and Limitations 1248

While HT-CapsNet demonstrates significant im- 1249

provements in hierarchical multi-label classifica- 1250

tion, several important considerations and limita- 1251

tions warrant discussion. Our analysis reveals both 1252

the strengths of our approach and areas that merit 1253

further investigation. The superior performance of 1254

HT-CapsNet, particularly on fine-grained datasets, 1255

validates our core hypothesis that explicitly in- 1256

corporating taxonomic information into the rout- 1257

ing mechanism enhances hierarchical representa- 1258

tion learning. The consistent improvements across 1259

both coarse and fine-grained levels suggest that our 1260

approach successfully balances high-level category 1261

discrimination with fine-grained feature detection. 1262

This is particularly evident in the t-SNE visualiza- 1263

tions, where HT-CapsNet maintains clear cluster 1264

separation while preserving hierarchical relation- 1265

ships. 1266

Nonetheless, it is important to recognize several 1267

challenges associated with our taxonomy-aware 1268

routing mechanism. To begin with, the computa- 1269

tional complexity escalates as the hierarchy’s depth 1270

and breadth increase. Although this added com- 1271

plexity is warranted due to the performance en- 1272
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hancements, it might pose difficulties for hierar-1273

chies that are excessively deep or for applications1274

requiring real-time processing. Future research1275

could investigate optimization methods or prun-1276

ing approaches to alleviate this computational load1277

while preserving performance. Our existing imple-1278

mentation necessitates a predetermined, static tax-1279

onomy framework. Although this works well for1280

numerous practical applications with clearly estab-1281

lished class hierarchies, it might restrict adaptabil-1282

ity in situations where taxonomic connections are1283

ambiguous or changing. Expanding the model to1284

accommodate dynamic or probabilistic taxonomies1285

could enhance its range of use. Additionally, HT-1286

CapsNet demonstrates strong performance across1287

a variety of datasets, its advantages are most1288

pronounced in complex, fine-grained classification1289

tasks. For simpler hierarchical structures, the ad-1290

ditional complexity of our approach may not al-1291

ways justify the marginal improvements over sim-1292

pler methods. This suggests the need for adaptive1293

mechanisms that can adjust the routing complexity1294

based on the task requirements.1295

The current model also assumes clean, well-1296

defined hierarchical relationships. In practice,1297

some classes might have ambiguous relationships1298

or belong to multiple parent categories. Fu-1299

ture work could explore modifications to handle1300

such overlapping hierarchies or direct acyclic graph1301

based taxonomic relationships. Additionally, inves-1302

tigating ways to automatically learn or refine tax-1303

onomic structures from data could make the ap-1304

proach more adaptable to scenarios where expert-1305

defined hierarchies may be suboptimal. Further-1306

more, a significant constraint lies in the require-1307

ment for carefully tuned hyperparameters, partic- 1308

ularly in the routing mechanism. Although our 1309

empirical studies provide guidance for parameter 1310

selection, developing more robust, self-adaptive 1311

parameter tuning strategies could improve the 1312

model’s usability across different domains. 1313

Despite these constraints, our findings indicate 1314

that HT-CapsNet marks a considerable advance- 1315

ment in hierarchical multi-label classification. The 1316

model’s ability to maintain hierarchical consis- 1317

tency while achieving top-tier performance sug- 1318

gests promising directions for future research in 1319

hierarchical deep learning architectures. Look- 1320

ing ahead, several promising research directions 1321

emerge. Investigating the integration of self- 1322

supervised learning techniques could reduce the 1323

dependence on large labeled datasets. These con- 1324

siderations highlight both the significant potential 1325

and the remaining challenges in hierarchical deep 1326

learning, pointing toward exciting opportunities for 1327

future research and development in this field. 1328

6. Conclusion 1329

In this paper, we introduced HT-CapsNet, a 1330

novel hierarchical taxonomy-aware capsule net- 1331

work architecture that effectively addresses the 1332

challenges of hierarchical multi-label classification. 1333

Our approach uniquely integrates taxonomic re- 1334

lationships into the capsule routing mechanism 1335

through a taxonomy-guided routing algorithm, en- 1336

abling more effective learning of hierarchical fea- 1337

tures while maintaining consistency across classi- 1338

fication levels. Comprehensive experiments across 1339

diverse datasets demonstrate that HT-CapsNet con- 1340
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sistently outperforms existing approaches, with1341

particularly significant improvements in complex,1342

fine-grained classification tasks. The empirical re-1343

sults validate that both taxonomy-guided routing1344

and hierarchical agreement mechanisms contribute1345

significantly to the model’s performance, while vi-1346

sualization analysis reveals that HT-CapsNet learns1347

more discriminative and hierarchically consistent1348

representations compared to existing approaches.1349

Beyond the immediate technical contributions, this1350

work opens several promising directions for future1351

research in hierarchical deep learning, suggesting1352

potential applications in domains where hierarchi-1353

cal relationships play a crucial role.1354
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[17] F. M. Miranda, N. Köhnecke, B. Y. Renard, HiClass: A1430

Python library for local hierarchical classification compat-1431

ible with scikit-learn, Journal of Machine Learning Re-1432

search 24 (29) (2022) 1–17. arXiv:2112.06560, doi:1433

10.48550/arXiv.2112.06560.1434

[18] Y. Huo, Y. Lu, Y. Niu, Z. Lu, J.-R. Wen, Coarse-to-Fine1435

Grained Classification, in: Proceedings of the 42nd In-1436

ternational ACM SIGIR Conference on Research and De-1437

velopment in Information Retrieval, SIGIR’19, Association1438

for Computing Machinery, New York, NY, USA, 2019, pp.1439

1033–1036. doi:10.1145/3331184.3331336.1440

[19] K. T. Noor, A. Robles-Kelly, L. Y. Zhang, M. R. Bouadjenek,1441

W. Luo, A consistency-aware deep capsule network for hi-1442

erarchical multi-label image classification, Neurocomput-1443

ing 604 (2024) 128376. doi:10.1016/j.neucom.2024.1444

128376.1445

[20] S. Sabour, N. Frosst, G. E. Hinton, Dynamic Routing Be-1446

tween Capsules, in: Advances in Neural Information Pro-1447

cessing Systems, Vol. 30, Curran Associates, Inc., 2017,1448

pp. 1–11. doi:10.48550/arXiv.1710.09829.1449

[21] A. Pajankar, A. Joshi, Convolutional Neural Networks, in:1450

A. Pajankar, A. Joshi (Eds.), Hands-on Machine Learning1451

with Python: Implement Neural Network Solutions with1452

Scikit-learn and PyTorch, Apress, Berkeley, CA, 2022, pp.1453

261–284. doi:10.1007/978-1-4842-7921-2_14.1454

[22] K. T. Noor, A. Robles-Kelly, B. Kusy, A Capsule Net-1455

work for Hierarchical Multi-label Image Classification, in:1456

A. Krzyzak, C. Y. Suen, A. Torsello, N. Nobile (Eds.), Struc-1457

tural, Syntactic, and Statistical Pattern Recognition, Lec-1458

ture Notes in Computer Science, Springer International1459

Publishing, Cham, 2022, pp. 163–172. doi:10.1007/1460

978-3-031-23028-8_17.1461

[23] K. T. Noor, A. Robles-Kelly, L. Y. Zhang, M. R. Bouad-1462

jenek, A Bottom-Up Capsule Network for Hierarchical Im-1463

age Classification, in: 2023 International Conference on1464

Digital Image Computing: Techniques and Applications 1465

(DICTA), 2023, pp. 325–331. doi:10.1109/DICTA60407. 1466

2023.00052. 1467

[24] S. Zheng, S. Chen, Q. Jin, Few-Shot Action Recognition 1468

with Hierarchical Matching and Contrastive Learning, in: 1469
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