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A B S T R A C T

In this paper, we present H-CapsNet, a capsule network for hierarchical image classification. Our network
makes use of the natural capacity of CapsNets (capsule networks) to capture hierarchical relationships. Thus,
our network is such that each multi-layer capsule network accounts for each of the class hierarchies using
dedicated capsules. Further, we make use of a modified hinge loss that enforces consistency amongst the
hierarchies involved. We also present a strategy to dynamically adjust the training parameters to achieve
a better balance between the class hierarchies under consideration. We have performed experiments using
several widely available datasets and compared them against several alternatives. In our experiments, H-
CapsNet delivers a margin of improvement over competing hierarchical classification networks elsewhere in
the literature.
1. Introduction

Classification is a fundamental problem in computer vision. It in-
volves learning a function that predicts the membership of object
instances to different classes. Image classification has found applica-
tions in medical imaging [1], satellite image processing [2], online
marketing [3], image collection organisation and indexing [4] and
tagging [5]. Note that these image classification tasks usually follow
a supervised approach where all classes are treated equally, devoid of
a taxonomical or hierarchical structure between them.

Viewed in this manner, traditional image classification tasks often
comprise a single class prediction per image. These types of classifi-
cation models treat all predicted classes equally, with no notion of
hierarchy or precedence between them. Hierarchical classification, on
the other hand, is a classical problem in which objects are organised
into fine categories which are then grouped into coarse-level ones
based upon semantic relations. This is because some classes are deemed
to contain similar semantic features or traits and, therefore, can be
grouped together to endow a hierarchical structure to the class set.
Note that, in hierarchical image classification, the models generally
employ the ‘‘coarse-to-fine’’ paradigm where coarse class predictions
and features are used to guide those of fine classes. Further, nonethe-
less a dedicated classifier can be trained to predict fine classes [6],
hierarchical classification is such that often the coarse level class takes
precedence over the fine one. As a result, when performing hierarchical
classification, an image classifier often first predicts coarse levels and
then goes to predict finer ones. The advantage of this treatment is that,
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in hierarchical classification, the error can be confined to hierarchical
levels whereby the model is expected to be well suited for the hierarchy
under consideration [7].

This contrasts with CapsNets, which operate upon the principle
of ‘‘routing by agreement’’, which allows them to model visual hi-
erarchical relationships. Recall that capsule networks (CapsNets) [8]
employ the likelihood of semantic features and the orientations of these
as the instantiation parameter values. As a result, the CapsNet can
learn both, the image features and their transformations allowing for a
natural means of recognition by parts. Thus, here we profit from their
capacity to learn relational information for hierarchical classification
by using the capacity of CapsNets to model semantic relationships of
image features. Furthermore, CapsNets often require less data to train
since they exhibit an equivariant behaviour which helps them to learn
rotational invariants, making the model robust to viewpoint changes.

In this paper, we present a CapsNet for hierarchical image classi-
fication (H-CapsNet) containing a dedicated capsule network for each
hierarchical level. The dedicated capsule networks for the hierarchical
levels in our H-CapsNet do share a similar capsule structure and routing
mechanism as proposed in [8]. However, each dedicated capsule net-
work has level-specific feature extractor blocks to allow level-specific
capsules to learn hierarchical features. Further, in contrast with the flat
classification approach in [8], the approach presented here combines
the contribution of each level-specific capsule network following the
‘‘coarse-to-fine’’ paradigm. This also applies to the reconstruction error
often employed in the training of capsule networks, such as that in [8],
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whereby our proposed H-CapsNet employs the decoder outputs from all
the hierarchical levels rather than just a single ‘‘flat’’ one.

Thus, the structure of the H-CapsNet presented here is motivated
by the notion that hierarchical models should take advantage of the
data-hierarchy, delivering predictions consistent with the applicable
label tree [7]. In this manner, our network exploits the natural advan-
tages of capsule networks while incorporating the hierarchical relations
between image features. To this end, we introduce a special training
strategy that encourages consistency with the class-hierarchy structure
while adjusting the training parameters of the H-CapsNet model so
as to better balance the contributions of each hierarchy level to the
loss. As a result, our H-CapsNet model can effectively learn the class-
hierarchy whereby coarse level parameters are prioritised earlier and,
later on in the training process, more importance is given to finer
categories based on the model performance. In our experiments, H-
CapsNet yields a margin of improvements over alternatives elsewhere
in the literature, converging at a faster rate while keeping consistency
between class-hierarchies.

Thus, this paper is organised as follows. In the following section,
we review prior work on both, hierarchical classification and capsule
networks. In Section 3 we present our hierarchical capsule network,
H-CapsNet. We also elaborate upon the loss function used here and the
training strategy for adjusting automatically the contribution of each
of the class hierarchies to the loss. In Section 4, we present results
on widely available datasets and compare against alternatives. We also
present an ablation study. Finally, in Section 5 we conclude upon the
developments presented here.

2. Related work

As mentioned above, in this section, we review the literature on
hierarchical classification and capsule networks.

2.1. Capsule networks

We commence by noting that capsule networks (CapsNet) can learn
both, the image features and their transformations. This allows Cap-
sNets to naturally identify image classes by executing recognition by
parts. Recall that CapsNets use a set of neurons to obtain an ‘‘activity
vector’’. The neurons in the CapsNet are thus grouped into capsules,
whereby deeper layers can be viewed as the probability of the outputs
from preceding capsules ‘‘agreeing’’ with one another.

Indeed, in the computer vision and machine learning communities
CapsNets have attracted a lot of attention due to their viewpoint
invariance capabilities. This is important since they can address the
‘‘Picasso effect’’ in classifiers. Furthermore, CapsNets are robust to input
perturbations when compared to other CNNs of similar size [9]. As a
result, several computer vision tasks have been tackled using CapsNets,
including text classification [10], 3D data processing [11], target recog-
nition [12] and image classification [13]. It is worth noting in passing
that, despite the growing interest in CapsNets, to our knowledge,
they have not been applied to hierarchical multi-label classification
problems.

The theory of capsules was originally proposed in [14], where
capsules were applied to maintain the relations of spatial features in
the input data so as to learn instantiation parameters that are robust
to variations in position, orientation, scale and lighting. In [8] the au-
thors presented a dynamic routing technique for the routing algorithm.
Their capsule implementation asserted that CapsNets can overcome
viewpoint invariance problems and are effective for classifying highly
overlapping images. Later on, in [15] Hinton et al. proposed a proba-
bilistic routing technique based upon the EM-algorithm [16] to learn
part-whole relationships. Based on the EM routing strategy in [15],
Bahadori [17] proposes a spectral capsule network with improved
convergence with respect to that employing the EM routing so as
to compute the capsule activation and pose. Capsule networks have
2

also been extended to architectures such as Siamese networks [18],
generative adversarial networks (GANs) [19] and residual networks
(ResNets) [20]. A Multi-Column Capsule Network is proposed in [21],
which computes agreements between neurons in different layers using
a two-phase dynamic routing protocol.

2.2. Hierarchical classification

Hierarchical image classification tasks intrinsically require multi-
level predictions per instance which correspond to a hierarchical label
tree. Note that hierarchical multi-label classification can be viewed
as a generalisation of multi-class problems with a hierarchy rather
than exclusive classes. As a result, it has attracted considerable re-
search attention and remains a challenging problem in both machine
learning and pattern recognition. Note that the hierarchical multi-
label classification problem can be viewed as a tree or direct acyclic
graph (DAG) problem [22] depending on the hierarchical structure
of the target labels. Recall that, according to Silla and Freitas [22],
hierarchical classifiers can be grouped into flat, local or global ones.
It is worth noting that, viewed in this manner, the method presented
here would be considered a global one where a single classifier model
is learnt from the training set. Furthermore, as related to the classifier
model itself, a number of methods have been proposed to address
hierarchical classification tasks, ranging from kernel methods [23] to
decision trees [24] and, more recently, artificial neural networks [25].
For a detailed survey of hierarchical classification, the interested reader
can go to [22].

Note that, despite the fact that image hierarchical classification
has been applied to the annotation of medical images [26], these
methods are typically less concerned with images and instead focus on
other data modalities corresponding to scopes of application such as
protein structure prediction [24], data-dependent grouping [27] or text
classification [28]. This is somewhat surprising considering the notion
that incorporating hierarchies in the classification model is expected
to allow it to generalise better, a trait that is particularly relevant to
image classification tasks. This is since these semantic relationships of
the target classes can be used as a guide for the classifier when utilising
hierarchical methods for image classification. Along these lines, word
hierarchies have been applied to provide consistency across multiple
datasets [29], provide a post-conviction estimate [30] and optimise the
tradeoff between accuracy and specificity in visual recognition [31].

As applied to image data, hierarchical classification models often
employ convolutional neural networks (CNNs). This is since these can
be viewed as naturally hierarchical [32], whereby the early layers of
a CNN architecture can be related to the coarse levels in the hierar-
chy and deeper layers to the finer categories. Yan et al. [6] propose
a hierarchical deep CNN (HD-CNN) by applying convolutional net-
works to a category hierarchy. Their method first separates the clearly
separable classes into coarse categories and then more challenging
classes are routed to the fine categories for prediction. Thus, in [6]
the coarse-to-fine paradigm is used to improve the model performance
making use of the hierarchical structure. Zhu and Bain [7] relate the
network layers to the hierarchical levels on a label tree. To do this,
they note that the top-level hierarchies are expected to account for
features common to finer categories in the label tree, whereby finer
classification often requires more class-specific features. In a similar
fashion, [33] proposes a convolutional architecture aimed at classifying
apparel categories reflecting a hierarchical structure. Further, in [34],
the authors propose a hierarchical multi-label classification method
for fashion images called Condition-CNN, which is based on the idea
of conditioning the output of a CNN on the hierarchical structure of
the labels. Recently, Dhall et al. [35] have studied order-preserving
embeddings for modelling hierarchical semantic structures employing
label-to-label and image-to-image hierarchical relations.
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Fig. 1. (a) Architecture of our Hierarchical Capsule Network (H-CapsNet); (b) The architecture for each of the H-Caps block. Note the network is comprised of several branches,
whereby each H-Caps block has dedicated capsules for each of the classes at each hierarchy level. The decoder uses the class predictions to reconstruct the encoded data so as to
apply the reconstruction loss. Both, the decoder and encoder are comprised by convolutional nets as described in Section 4.2.
3. Hierarchical capsule networks

As mentioned earlier, our H-CapsNet uses a capsule architecture
to obtain a multi-label prediction based on a hierarchical/taxonomical
label tree. In Fig. 1(a), we show both, the architecture of our network
and that of the H-Caps blocks that comprise it. Note that, our H-CapsNet
has an encoder block designed to meet the needs of converting pixel
intensities into features that can then be utilised as the inputs for the
subsequent blocks in the network. This structure is quite general in
nature whereby these encoders are comprised by a combination of
convolutional, batch normalisation and pooling layers which can be
adapted and modified depending on the complexity of the dataset.
In Section 4.2 we detail the structure of these for the datasets under
consideration in our experimental study.

In the figure, the 𝐻 − 𝐶𝑎𝑝𝑠𝑗 blocks corresponding to the hierar-
chical levels are capsule networks themselves, whereby each of these
account for the classes present at the 𝑗th hierarchical level in the label
tree. In this manner, the 𝐻 − 𝐶𝑎𝑝𝑠1 refers to the coarsest class-level,
whereas the 𝐻 − 𝐶𝑎𝑝𝑠𝑛 corresponds to the finest out of 𝑛 hierarchical
levels. Thus, each of the hierarchical levels from coarse-to-fine, has its
own capsule networks and, therefore there are as many of these as
hierarchies. Our H-CapsNet employs a ‘‘coarse-to-fine’’ scheme based
upon multiple capsule layers for each level on the hierarchical label
tree. These branches follow the coarse-to-fine paradigm whereby all
branches are used for the reconstruction term of the total loss. This
allows the finer branches to leverage the features learned by the coarser
ones, improving prediction accuracy. The loss used here is described in
Section 3.2.

Note that, in a hierarchical-label tree, coarse level classes are a
superclass of all the medium and fine classes. Conversely, medium
classes are a superclass of all the fine classes and so on. This hints at the
3

notion that each H-Caps block should share features which are common
to several hierarchy levels. Thus, in our architecture, the encoder is
common, as shown in the figure, where each H-Caps block in the
network has its own prediction layer. In the figure, these are denoted
as 𝑗 and estimate class probabilities at the corresponding 𝑗th class-
hierarchy level making use of a logit function. Thus, when performing
image classification, the prediction layers 𝑗 deliver the probabilities
for the 𝑗 classes at the 𝑗th hierarchical level in the label tree.

Recall that CapsNets [15] are trained using a hinge and a recon-
struction loss. This reconstruction loss allows for the capsule network
to encode the input’s instantiation parameters. As a result, we make use
of an auxiliary decoder network to reconstruct the input image while
training the model. The decoder used here employs the predictions
delivered by the layers 𝑗 and the activity vector outputs from the H-
Caps blocks for each hierarchy. It is also worth noting that, as shown
in Fig. 1(b), the decoder for the reconstruction loss takes at input
the H-Caps block outputs via concatenation. This concatenation is a
straightforward step for tree-structured label sets. For labels structured
as direct acyclic graphs, the concatenation step is expected to take
into account the variation in the number of outputs passed on by the
decoders corresponding to each of the H-Caps blocks. This is achieved
by introducing a padding operation. Regarding the decoders them-
selves, these are comprised by convolutional networks whose structure
is detailed in Section 4.2.

3.1. Capsule network blocks

In our network, each of the capsule networks (𝐻 − 𝐶𝑎𝑝𝑠) blocks
share the same structure. In this manner, each of the 𝐻 − 𝐶𝑎𝑝𝑠 blocks
has a feature extraction stage so as to extract features specific to the
corresponding level under consideration in the hierarchy tree under
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study. Each feature extraction block contains multiple convolutional
layers, a batch normalisation and a max pooling layer with unique
parameter settings according to the hierarchical levels of the dataset.

These features are then delivered to the primary capsules in the
𝐻 − 𝐶𝑎𝑝𝑠 block. Thus, the feature map for the hierarchy level indexed
𝑗 is reshaped so as to fit the input shape of the primary capsule
network 𝑗 . Note the primary capsules used here are comprised by
a convolutional capsule layer with 𝑟 𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 vectors. The
value of 𝑟 and 𝑛 is dependent upon the dataset and hierarchy under
consideration. The output vector from primary capsules 𝑗 is then fed
into the secondary capsules 𝑗 as shown in Fig. 1. Note that each 𝑗
comprises 𝑗 capsules, where each of these accounts for a class label
in the same 𝑗th hierarchical level. Hence, there are as many of these
as classes in the hierarchical level under consideration, whereby each
capsule network 𝑗 outputs a classification prediction vector for the
𝑗th level in the label-tree.

3.2. Loss function

The loss function for our H-CapsNet is a weighted summation of all
the classification losses across the label-tree and the reconstruction loss.
In this manner, the total loss for our network becomes

𝐿𝑇 = 𝜆𝐿𝑅 + 𝐿𝐶 (1)

where 𝐿𝑅 is the reconstruction loss, 𝐿𝐶 is the classification loss given
by

𝐿𝐶 =
𝑁
∑

𝑗=1
𝛾𝑗𝐿𝑀𝑗

(2)

and 𝜆 is a constant that controls the influence of the classification loss
upon the total loss.

In Eq. (2), 𝛾𝑗 is a weight that adjusts the contribution of each class
hierarchy to the overall loss and 𝐿𝑀𝑗

denotes the hinge loss for the 𝑗th
H-Caps block, which is expressed as
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‖
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where, 𝑇𝑘,𝑗 = 1 if class 𝑘 belongs to the 𝑗th level in the hierarchy
and 𝑇𝑘,𝑗 = 0 otherwise, 𝑚+, 𝑚− are hyper-parameters, 𝜂 is the down-
weighting of the loss and 𝑣𝑘,𝑗 is the output vector of the secondary
capsule corresponding to the 𝑘th class.

In this manner, the classification loss becomes a linear combination
of the hinge losses for each of the 𝑁 hierarchical levels in the label-tree.
Moreover, the weights 𝛾𝑗 and 𝜆 regulate the balance between the hinge
and reconstruction losses. Here we employ the 𝐿 − 2 norm between
the input instance 𝑥 and the reconstructed one 𝑥̂ yielded by the final
decoder in Fig. 1 for the reconstruction loss in Eq. (1). Therefore, the
reconstruction loss becomes

𝐿𝑅 = ‖𝑥 − 𝑥̂‖22 (4)

3.3. Dynamic loss weights

Here, we also note that the weights 𝛾𝑗 used in the computation of
the loss function 𝐿𝐶 can be used to improve the model accuracy. This
hinges in the notion that, since these control the contribution of the
classification losses to the total loss, they can be used to balance the
influence of each of these as related to the label-tree during training.

Thus, here we employ the training accuracy to compute the values
of 𝛾𝑗 . We also note that the value of all the weights 𝛾𝑗 and 𝜆 should be
equal to unity. Further, the values of 𝛾𝑗 should account for the number
of classes in each hierarchy so as to balance these appropriately. As a
result, we commence by computing the ratio of the number of classes
𝐾𝑗 at the hierarchy level 𝑗 to the total number of classes in the label
tree. This is given by

𝜚𝑗 =
|

|

|

𝐾𝑗
|

|

|

∑𝑁 (5)
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|

|

𝐾𝑖
|

|
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With the ratio above in hand, we also note that, as the training
progresses, some hierarchy levels will train at different rates, whereby
we can use the training accuracy to govern the influence of the hinge
loss for each level accordingly. Thus, we define the quantity

𝜏𝑗 =
(

1 − 𝐴𝑐𝑐𝑗
)

𝜚𝑗 (6)

where 𝐴𝑐𝑐𝑗 is the value of the training accuracy for the 𝑗th hierarchy
n the label-tree.

Note that 𝜏𝑗 is expected to be greater when the accuracy 𝐴𝑐𝑐𝑗 is
mall. Thus, it can be used to increase the influence of the loss by
etting the weight 𝛾𝑗 . As a result, we compute the classification loss

weights as follows

𝛾𝑗 = (1 − 𝜆)
𝜏𝑗

∑𝑁
𝑖=1 𝜏𝑖

(7)

where the term (1−𝜆) accounts for the notion that the sum of all weights
𝛾𝑗 and 𝜆 should add up to unity and we have added the denominator
for normalisation purposes.

4. Experiments

We have conducted numerous experiments to evaluate our H-
CapsNet model. To this end, we have used four widely available
datasets and compared our results to other methods elsewhere in the
literature. We have also performed an ablation study.

4.1. Data-sets

As mentioned above, for evaluating our H-CapsNet model we have
used several datasets. These are the Fashion-MNIST [36], Marine-
tree [37], CIFAR-10 and CIFAR-100 [38] datasets. The Fashion-MNIST
dataset contains 60,000 training and 10,000 testing grey-scale images
depicting fashion items. Each example in the original dataset is a
28 × 28 greyscale image corresponding to one out of ten classes. In
our experiments, we have used the same label-tree as that employed
in [33], where the authors use three hierarchical levels. These are a
coarse level comprised by two classes and a medium one composed of
6 classes. In Fig. 2, we show the hierarchical label-tree used here for
the Fashion-MNIST dataset.

The Marine-tree dataset [37]1 contains 160,000 images of marine
organisms divided into tropical and temperate subsets according to
the climate. The dataset provides five hierarchical levels with a total
of 161,185 images, where 118,260 were used for training, 16,127 for
validation and 26,798 for testing. For the sake of consistency, in all our
experiments, we employed the Marine-tree dataset with the first three
hierarchical levels combining the tropical and temperate subsets into
one. For these three hierarchical levels, the coarse one has two classes,
the medium one has 10 and the fine one has 38 classes.

The CIFAR-10 and CIFAR-100 datasets consist of 60,000 32 × 32
olour images. There are 50,000 training images and 10,000 testing
mages in both datasets. For both datasets, we have used the hierarchies
resented in [7]. As a result, both datasets are organised in a three-level
abel-tree, which, for the CIFAR-10 comprises a medium and a coarse
evel composed of 7 and 2 classes, respectively. In Fig. 3, we show the
abel-tree used here for the CIFAR-10 dataset. Since the CIFAR-100 has
00 fine classes grouped into 20 superclasses, Zhu and Bain [7] employ
hese as fine and medium levels in the label-tree and add a coarse one
ontaining 8 classes in order to employ a three-level label-tree. Further,
ased on the CIFAR-10 dataset, we have also created a direct acyclic
raph (DAG) dataset.2 To do this, we have modified the CIFAR-10 label-
ree by adding a multiple parent node for some fine level classes. In this
anner, we have created a DAG dataset with 10 fine classes, 7 medium

lasses and 2 coarse classes.

1 The Marine Tree dataset is widely available at https://github.com/
boone91/Marine-tree.

2 The DAG version of the CIFAR-10 dataset is available at https://github.
om/tasrif-khondaker/H-CapsNet.

https://github.com/tboone91/Marine-tree
https://github.com/tboone91/Marine-tree
https://github.com/tasrif-khondaker/H-CapsNet
https://github.com/tasrif-khondaker/H-CapsNet
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Fig. 2. Hierarchical label-tree for the Fashion-MNIST [36] dataset used in our experiments. The ten fine classes are grouped into 7 medium and two coarse ones as proposed
in [33].
Fig. 3. Hierarchical label tree for the CIFAR-10 [38] dataset used in our experiments. In addition to the provided ten fine classes, the authors in [7] use 7 medium and two
coarse ones.
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4.2. Experimental setup

In all our experiments we normalise the training and testing data
by subtracting the mean and dividing by the standard deviation. Fur-
thermore, during training, in all our experiments we have applied the
MixUp data augmentation technique [39] with an alpha value of 0.2 to
all the models under consideration. Here we use the Adam optimiser
with an exponentially decaying learning rate given by

𝜂 = 𝜂̂𝛽max(0,𝐸−𝜅) (8)

where 𝛽 and 𝜅 are constants and 𝐸 is the epoch number. In all our
experiments we set the initial learning rate 𝜂̂ to 0.001, 𝛽 to 0.95 and 𝜅
to 10.

We have implemented our approach on TensorFlow/Keras.3 The
common encoder block in our network, which is shared amongst all
the H-Caps blocks, consists of two convolutional layers followed by a
batch normalisation layer. These convolutional layers are comprised by
32 and 64 filters for the fashion-MNIST dataset and 64 filters for the
two layers for the other datasets. These make use of 3 × 3 filters with
zero-padding with a stride value of 1 and 𝑅𝑒𝐿𝑢 activation functions.

For all our results we have employed 8 − 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 primary
capsules 𝑗 and 16 −𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 secondary capsules 𝑗 with dynamic
routing [8] using 2 iterations between the capsule layers. The Decoder
network for all hierarchical levels in the H-CapsNet model uses three
sequential dense layers and a reshape layer. The first layer has 512
neurons, and the second layer has 1024 neurons with both layers using
the 𝑅𝑒𝐿𝑢 activation functions. Note that the number of neurons in
the third layer of the decoder network corresponds to the input image
dimensionality with a 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 activation function.

As mentioned earlier, we configure the H-CapsNet model architec-
ture based on both, the hierarchical levels and the dataset complexity.
Like the encoder block, the feature extraction block in the H-Caps
block is comprised by a set of convolutional layers followed by batch
normalisation and max pooling layers. As said earlier, we have adjusted
the number of layers in the feature extraction block by considering
the complexity of the hierarchical levels in the datasets. Thus, for the
Fashion-MNIST dataset, the feature extraction block at the coarse level
in the hierarchy is comprised of a single convolutional layer with 512
filters and a kernel size of 7 × 7 followed by a batch normalisation

3 The implementation of H-CapsNet is available on https://github.com/
tasrif-khondaker/H-CapsNet .
5
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Table 1
Accuracy yielded by our H-CapsNet employing the dynamic loss weight distribution
system and fixed loss weight values. The absolute best are in bold.

Dataset Dynamic loss weight Fixed loss weight

Coarse Medium Fine Coarse Medium Fine

Fashion-MNIST 99.73% 97.06% 93.95% 99.69% 96.64% 93.09%
CIFAR-10 97.67% 92.90% 91.41% 97.26% 92.04% 90.65%
CIFAR-10a 94.39% 88.06% 91.59% 93.98% 87.20% 90.83%
CIFAR-100 80.00% 77.02% 67.86% 79.86% 75.48% 65.21%
Marine-tree 88.38% 79.49% 62.44% 89.64% 77.20% 56.28%

Denotes the DAG version of the CIFAR-10 dataset.

ayer. The medium and fine level H-Caps block feature extractors are
omprised by three convolutional layers with 128, 256 and 512 filters,
espectively, all of which have a kernel size of 3 × 3. For the CIFAR-10,
IFAR-100 and Marine-Tree datasets, the coarse level feature extractor
as two convolutional layers with 128 filters. The medium level has
convolutional layers, and the fine class-level has 6 convolutional

ayers, all in pairs with a max-pooling layer with a stride set to 2 × 2
etween each of these. These pairs have 128, 256 and 512 filters for
he fine class-level and 128 and 256 for the medium one. All the kernel
izes have been set to 3 × 3 and 𝑅𝑒𝐿𝑢 activation functions. Also, each
onvolutional layer is followed by a batch normalisation layer with
ensorFlow’s default settings.

In all our experiments we have set the hyper-parameters 𝑚+, 𝑚−, 𝜂
alue to 0.9, 0.1 and 0.5, respectively. We have set the loss weight
in Eq. (1) to 0.0005 and have trained the H-CapsNet model for

00 epochs for Fashion-MNIST, Marine-tree, CIFAR-10 and CIFAR-100
atasets. In all our experiments these values were found by cross
alidation.

.3. Ablation study

As said previously, we have also conducted an ablation study using
he four datasets under consideration. This consists in ablating the
ncoder and feature extraction blocks from our H-CapsNet architecture
o as to better understand the contribution of these to the model
erformance. Additionally, we have conducted experiments where the
ynamic loss weights have been replaced with fixed values. Finally,
n order to analyse the contribution of the reconstruction loss to our
raining step, we have trained our H-CapsNet model with a loss devoid
f the term 𝐿𝑅 in Eq. (1). We do this by setting the reconstruction loss
eight 𝜆 to 0. This implies that the overall loss function depends on

https://github.com/tasrif-khondaker/H-CapsNet
https://github.com/tasrif-khondaker/H-CapsNet
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Fig. 4. Accuracy and loss weight values as a function of training epoch for the H-CapsNet model trained using the Fashion-MNIST dataset.
Fig. 5. Accuracy and loss weight values as a function of training epoch for the H-CapsNet model trained using the Marine-tree dataset.
the classification loss 𝐿𝐶 whereby the loss weights 𝛾𝑗 are computed by
setting 𝜆 = 0 in Eq. (7).

Thus, we have trained the model with all the combinations arising
from the ablation of both, the encoder block and the feature extraction
blocks. For the purpose of analysing the model by ablating the encoder
block, we have directly fed the input image to the dedicated feature
extraction blocks for each hierarchical level. Similarly, for ablating
the feature extraction blocks from our model architecture, we have
reshaped the output from the common encoder block to allow for it to
be used as input by the primary capsules corresponding to each of the
hierarchical levels in the label-tree. In the case where both the encoder
and feature extraction blocks have been removed from the model, we
directly feed the input instances to the primary capsules. For the sake
of fairness, all the training hyperparameters are kept the same for the
ablation study.

For the experiments involving the dynamic loss weights, we have
trained our model by fixing these and noted that, as shown in Eq. (7),
6

the dynamic loss weight distribution is based on both, the number
of classes at each hierarchy level in the label-tree and the accuracy
values, being the latter the ones that permit the weight to ‘‘adjust’’ to
training performance. Therefore, in order to train the model with fixed
loss weight values, we have only considered the classes in each level
of the label-tree, computing the loss weight values by setting 𝜏𝑗 = 𝜚𝑗
in Eq. (7). This effectively bypasses the computation in Eq. (6). Thus,
the loss weight values remain constant for each of the hierarchy levels
while maintaining the balance with respect to the relative number of
classes in the label-tree.

4.4. Results and discussion

We now focus on the results yielded by our network and a number
of alternatives when applied to the four datasets under consideration.
In our results, we have used as a baseline the CapsNet as originally
proposed in [8] and, for purposes of comparison, we have also per-
formed experiments using the HD-CNN in [6], the B-CNN [7] and the
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Fig. 6. Accuracy and loss weight values as a function of training epoch for the H-CapsNet model trained using the CIFAR-10 dataset.
Fig. 7. Accuracy and loss weight values as a function of training epoch for the H-CapsNet model trained using the CIFAR-100 dataset.
Condition-CNN [34]. In all our experiments, the B-CNN model learning
rates and loss weights have been set as stated in [7]. The B-CNN model
used here is the Base B model [7]. The architecture of the Condition-
CNN model used here is the same as the one described in [34], and we
have trained the model from scratch without utilising any pre-trained
weights.

We commence by comparing the effects of fixing the loss weights
rather than employing the dynamic approach presented in Section 3.3.
In Table 1, we present the model classification accuracy for both cases,
i.e. fixed and dynamic loss weights. Note that, in the table, the dynamic
loss weight approach achieves better classification accuracy for all the
applicable levels across the four datasets. This is since the dynamic
loss weight values deliver a better balance between the level-specific
losses. In Figs. 4–7 we show the model accuracy and corresponding loss
weight value for each of the class-hierarchies as a function of epoch
number. It is worth observing that, in Fig. 4, the loss weight values for
the Fashion-MNIST dataset are greater for the fine level, followed by
those for the medium and coarse level hierarchies. This is due to the
7

fact that, throughout the training, the classification accuracy dominates
from coarse-to-fine. As a result, the model prioritises fine-levels over
the coarse and medium ones. In contrast, in Fig. 5, the coarse-level
and medium-level loss weight values for the marine-tree dataset switch
places when the model achieves higher medium-level accuracy. The
model then distributes the loss weights as performance improves. This
trend is also present in the plots for the CIFAR-10 and CIFAR-100
datasets, where the coarse level weight increases only after the medium
and fine level accuracy improve.

In Table 2, by showing the accuracy yielded by the models under
consideration when applied to the Fashion-MNIST and Marine-Tree
datasets. These include the ablated variants of our approach and the
alternatives. Similarly, in Table 3, we show the accuracy of our network
and the alternatives when applied to the CIFAR-10 and CIFAR-100
datasets. In the tables, we show the accuracy for all the applicable
levels of the class-hierarchies for our networks, as well as for the B-CNN
and Condition-CNN approaches. We also show the performance of the
CapsNet in [8] on the fine class-hierarchy and HD-CNN in [6] on the
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Table 2
Accuracy yielded by our H-CapsNet, the CapsNet in [8], the HD-CNN [6], the B-CNN [7] and the Condition-CNN [34] when
applied to all the datasets. The absolute best are denoted in bold.

Dataset Level Accuracy (%)

CapsNet HD-CNN B-CNN Condition-CNN H-CapsNet

Fashion-MNIST
Coarse – – 99.80 99.78 99.73
Medium – 94.86 96.51 96.65 97.06
Fine 91.20 90.46 93.52 93.42 93.95

CIFAR-10
Coarse – – 96.08 95.86 97.67
Medium – 85.08 87.13 83.78 92.90
Fine 70.42 79.96 84.54 79.74 91.41

CIFAR-10a
Coarse – – 81.55 58.28 94.39
Medium – 87.60 14.98 32.43 88.06
Fine 70.42 85.00 62.72 74.67 91.59

CIFAR-100
Coarse – – 71.08 73.38 80.00
Medium – 65.44 61.99 61.27 77.02
Fine 34.93 48.39 56.38 47.91 67.86

Marine-tree
Coarse – – 88.28 88.75 88.38
Medium – 60.06 75.88 76.64 79.49
Fine 46.73 45.62 54.48 53.99 62.44

a Denotes the DAG version of the CIFAR-10 dataset.
Table 3
Accuracy yielded by our H-CapsNet and its ablation versions when applied to all the datasets. The absolute best are denoted in bold. Here,
the following shorthands apply: w/ = with, w/o = without, ENC = Encoder block, FE = Feature Extraction block, 𝐿𝑅 = Reconstruction Loss
in Eq. (1). Here, ∗ denotes the DAG version of the CIFAR-10 dataset.

Dataset Level Accuracy (%)

H-CapsNet H-CapsNet
w/ ENC,
w/o FE

H-CapsNet
w/o ENC,
w/ FE

H-CapsNet
w/o ENC,
w/o FE

H-CapsNet
w/ Lr = 0

Fashion-MNIST
Coarse 99.73 99.72 99.41 98.77 99.74
Medium 97.06 95.77 95.71 89.99 96.45
Fine 93.95 91.90 93.07 82.19 93.54

CIFAR-10
Coarse 97.67 93.47 92.50 84.39 97.01
Medium 92.90 75.12 89.29 57.14 92.42
Fine 91.41 69.24 90.45 50.08 91.12

CIFAR-10a
Coarse 94.39 90.19 89.22 81.11 93.73
Medium 88.06 70.28 84.45 52.30 87.58
Fine 91.59 69.42 90.63 50.26 91.30

CIFAR-100
Coarse 80.00 65.35 66.06 44.31 79.35
Medium 77.02 51.99 72.48 28.81 75.61
Fine 67.86 38.20 65.86 19.41 65.71

Marine-tree
Coarse 88.38 87.11 85.88 86.13 88.00
Medium 79.49 71.76 77.27 70.95 77.95
Fine 62.44 43.06 54.77 39.43 56.75

a Denotes the DAG version of the CIFAR-10 dataset.
edium and fine class-hierarchies. We do this since the baseline is not
hierarchical classification one, rather a ‘‘flat’’ classifier as originally

roposed in [8] and, therefore, the medium and coarse label hierarchies
o not apply. In the other hand, the HD-CNN in [6] employs a two-
evel hierarchy with pre-training for each level before fine-tuning the
omplete network.

Note that, for all our experiments, our proposed H-CapsNet model
chieved a margin of improvement over the alternatives, outperforming
ll the other methods under consideration. This trend is confirmed in
igs. 8–11, which show the fine-level classification accuracy for our H-
apsNet model, its ablated variants and the alternatives as a function
f training epoch for the datasets under consideration. In the plots,
e show the finer level of the class-label tree for our method, the B-
NN [7] and the Condition-CNN [34]. We have done this following the
otion that fine level classification is the most challenging of all levels,
onsistently exhibiting the lowest performance for all classifiers and
atasets. Following the authors, the HD-CNN model accuracy shown in
he plots is calculated using the probabilistic averaging function in [6].

On the results, it is also worth noting that, as compared with the
aseline, our approach improvement is more evident for the Marine-
8

ree, CIFAR-10 and CIFAR-100 datasets, which are more challenging
than the Fashion-MNIST dataset. Indeed, for the Marine-tree, CIFAR-
10 and CIFAR-100 datasets, the improvement in convergence for our
approach is more evident too. This trend is also consistent across the
other datasets under consideration.

It is worth observing that, in Tables 2 and 3, the accuracy of
our H-CapsNet model drops without the encoder and the dedicated
feature extraction blocks. This is since the encoder block in our H-
CapsNet architecture learns the features that are particularly useful for
coarse classification. This can be observed in Tables 2 and 3, where
the accuracy for the H-CapsNet without the encoder block drops for
the coarse level accuracy as compared to our network without the
dedicated feature extraction blocks. In the same way, the dedicated
feature extraction blocks for different levels are crucial for extracting
more level-specific features. Our H-CapsNet without these dedicated
feature extraction blocks exhibits a drop in accuracy that is more
pronounced for medium and fine level classification. This accuracy
drop is again more apparent for the Marine-tree, CIFAR-10 and CIFAR-
100 datasets. Further, from Figs. 9–11 we can observe there is a large
difference between our H-CapsNet and that without the dedicated
feature extraction and encoder blocks. Further, in Tables 2 and 3, the
H-CapsNet model performance without the reconstruction loss states
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Table 4
Precision, recall and F1-score yielded by our H-CapsNet, the CapsNet [8], the HD-CNN [6], the B-CNN [7] and the Condition-CNN [34] on the
datasets under consideration.

Model Level Metrics Fashion-MNIST Marine-tree CIFAR-10 CIFAR-10a CIFAR-100

CapsNet Fine
Precision 91.16% 38.40% 70.14% 70.14% 33.71%
Recall 91.20% 46.73% 70.42% 70.42% 34.93%
F1-Score 91.17% 41.24% 70.26% 70.26% 33.83%

HD-CNN

Medium
Precision 94.87% 75.00% 85.31% 88.10% 65.65%
Recall 94.87% 60.06% 85.08% 87.64% 65.44%
F1-Score 94.85% 65.51% 85.08% 87.66% 65.09%

Fine
Precision 90.35% 52.84% 80.08% 85.23% 48.56%
Recall 90.46% 45.62% 79.96% 84.99% 48.39%
F1-Score 90.30% 47.44% 79.96% 84.89% 47.29%

B-CNN

Coarse
Precision 99.80% 86.81% 96.08% 82.10% 71.91%
Recall 99.80% 88.28% 96.08% 81.55% 71.08%
F1-Score 99.80% 85.69% 96.07% 81.47% 70.67%

Medium
Precision 96.52% 73.28% 87.21% 28.39% 63.03%
Recall 96.51% 75.88% 84.56% 14.98% 61.99%
F1-Score 96.51% 71.43% 87.12% 10.39% 62.30%

Fine
Precision 93.51% 53.38% 84.56% 63.14% 57.29%
Recall 93.51% 54.48% 84.54% 62.72% 56.38%
F1-Score 93.51% 52.88% 84.54% 62.89% 56.64%

Condition-CNN

Coarse
Precision 99.78% 87.56% 95.86% 64.67% 73.49%
Recall 99.78% 88.75% 95.86% 58.28% 73.38%
F1-Score 99.78% 87.86% 95.85% 53.18% 73.31%

Medium
Precision 96.66% 74.46% 83.79% 19.61% 61.99%
Recall 96.65% 76.64% 83.78% 32.43% 61.27%
F1-Score 96.65% 75.05% 83.75% 21.69% 61.50%

Fine
Precision 93.42% 50.80% 80.14% 74.36% 49.94%
Recall 93.42% 53.99% 79.74% 74.67% 47.91%
F1-Score 93.42% 51.78% 79.84% 68.64% 48.48%

H-CapsNet

Coarse
Precision 99.73% 87.64% 97.67% 94.30% 80.01%
Recall 99.73% 88.38% 97.67% 94.50% 80.00%
F1-Score 99.73% 85.28% 97.67% 94.39% 79.91%

Medium
Precision 97.06% 81.24% 92.92% 89.52% 76.95%
Recall 97.06% 35.40% 92.90% 88.06% 77.02%
F1-Score 97.06% 49.31% 92.88% 88.01% 76.92%

Fine
Precision 93.96% 65.36% 91.39% 91.56% 67.62%
Recall 93.95% 62.44% 91.41% 91.59% 67.86%
F1-Score 93.95% 60.56% 91.38% 91.55% 67.50%

a Denotes the DAG version of the CIFAR-10 dataset.
Fig. 8. Accuracy as a function of training epoch for all the models under consideration for the Fashion-MNIST dataset. The following shorthands apply: w/ = with, w/o = without,
ENC = Encoder block, FE = Feature Extraction block.
9
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Fig. 9. Accuracy as a function of training epoch for all the models under consideration for the Marine-tree dataset. The following shorthands apply: w/ = with, w/o = without,
ENC = Encoder block, FE = Feature Extraction block.
Fig. 10. Accuracy as a function of training epoch for all the models under consideration for the CIFAR-10 dataset. The following shorthands apply: w/ = with, w/o = without,
ENC = Encoder block, FE = Feature Extraction block.
that the reconstruction part of the H-CapsNet model helps to improve
the overall model performance. This difference in model performance
is more apparent on the finer levels.

We now examine the precision, recall and F1-scores yielded by our
method and the alternatives. In Table 4, we show the results of these
performance metrics delivered by our H-CapsNet, the CapsNet in [8],
the HD-CNN in [6], the B-CNN in [7] and Condition-CNN in [34] for
each of the class-levels for the four datasets under consideration. In
order to compute the performance metrics for each level, we have
calculated these metrics for each class in the label-tree utilising the
confusion matrix4 corresponding to each level and then proceeded
to compute their average. Note that our datasets exhibit hierarchical

4 The confusion matrices for our experiments are available at https://
github.com/tasrif-khondaker/H-CapsNet.
10
level-imbalances with different number of instances per class. Thus,
here we compute the weighted average considering the number of
instances per class per hierarchical level. Note that in Table 4, our
model consistently outperforms the alternatives by achieving overall
higher precision, recall and F1-scores. Again, our model margin of
improvement is more evident on the CIFAR-10 and CIFAR-100 datasets.
On the Fashion-MNIST and Marine-tree dataset, the B-CNN approach
in [7] and Condition-CNN in [34] performed slightly better than our
method for coarse and medium classification, but for the fine levels,
our model still delivers the best performance.

Finally, we evaluate our approach and the alternatives making
use of the hierarchical metrics in [40]. These metrics consider the
entire set of predicted classes for each instance whereby these are
expected to be consistent with the targets across the superclasses in the
label-tree [41]. In contrast to the other evaluation metrics used here
previously, hierarchical precision (HP) and hierarchical recall (HR) are

https://github.com/tasrif-khondaker/H-CapsNet
https://github.com/tasrif-khondaker/H-CapsNet
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Fig. 11. Accuracy as a function of training epoch for all the models under consideration for the CIFAR-100 dataset. The following shorthands apply: w/ = with, w/o = without,
ENC = Encoder block, FE = Feature Extraction block.
Table 5
Hierarchical performance metrics for our H-CapsNet, the CapsNet [8], the HD-CNN [6], the B-CNN [7] and the Condition-CNN [34] on the
datasets used here. The absolute best are denoted in bold. The following shorthands apply: HP = Hierarchical Precision, HR = Hierarchical
Recall, HF1 = Hierarchical F1-Score, Cons = Hierarchical Consistency, EM = Exact Match.

Model Metrics Fashion-MNIST Marine-tree CIFAR-10 CIFAR-10a CIFAR-100

CapsNet

HP 91.20% 46.73% 70.42% 70.42% 34.93%
HR 91.20% 46.73% 70.42% 70.42% 34.93%
HF1 91.20% 46.73% 70.42% 70.42% 34.93%
Cons 100% 100% 100% 100% 100%
EM 91.20% 46.73% 70.42% 70.42% 34.93%

HD-CNN

HP 92.64% 55.67% 82.50% 87.99% 56.30%
HR 92.77% 58.78% 82.61% 87.94% 57.38%
HF1 92.69% 56.91% 82.54% 87.96% 56.73%
Cons 99.47% 76.08% 99.40% 99.91% 86.09%
EM 90.25% 42.61% 79.79% 79.10% 47.83%

B-CNN

HP 96.59% 72.69% 89.26% 58.83% 64.41%
HR 96.97% 77.03% 91.48% 63.03% 73.42%
HF1 96.75% 74.42% 90.18% 60.86% 67.93%
Cons 98.26% 80.63% 89.72% 99.58% 56.87%
EM 92.49% 47.29% 78.99% 9.59% 38.90%

Condition-CNN

HP 96.65% 72.91% 86.56% 55.27% 61.07%
HR 96.84% 76.46% 88.36% 60.97% 67.18%
HF1 96.73% 74.34% 87.30% 57.98% 63.45%
Cons 99.16% 82.66% 91.30% 43.90% 65.01%
EM 92.50% 49.10% 75.30% 15.09% 39.50%

H-CapsNet

HP 96.86% 76.93% 93.90% 92.22% 75.11%
HR 97.36% 80.97% 95.79% 92.75% 82.60%
HF1 97.07% 78.54% 94.69% 92.48% 78.02%
Cons 97.60% 83.07% 91.49% 90.34% 66.04%
EM 92.69% 54.85% 86.77% 80.78% 54.79%

a Denotes the DAG version of the CIFAR-10 dataset.
calculated considering the hierarchical relations in the label tree, where
the hierarchical F1-score (HF1) is the harmonic mean of the HP and
HR. Further, we reported hierarchical consistency and exact match for
all the models. Note that, for each instance, hierarchical consistency
implies that the prediction for all levels is consistent with those in
the ground-truth label tree, whereas the exact match score applies to
the predictions per-level without taking into account whether these
are all correct across the coarse, medium and fine levels. In Table 5,
we present the HP, HR, HF1, consistency and exact match for our H-
CapsNet, the CapsNet [8], the HD-CNN [6], the B-CNN [7] and the
Condition-CNN [34]. Note that the baseline CapsNet model in [8] is a
non-hierarchical classification approach and, hence, these performance
11
metrics become equivalent to their ‘‘flat’’ classification counterparts,
and consistency is measured using only fine-level predictions. Also,
recall that our model employs the hierarchical structure of the class-
set to impose consistency through the loss, which, in turn introduces
a structural constraint on the prediction. This results in an improved
performance which can be noted in Table 5, where our proposed
H-CapsNet model outperforms the alternatives.

5. Conclusions

In this paper, we have presented H-CapsNet, a Capsule Network
for hierarchical classification which uses dedicated capsules to predict
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specific classes. Compared with traditional capsule network models,
our H-CapsNet delivers multiple predictions per instance which account
for all those applicable to the hierarchical label-tree under consider-
ation. Making use of a modified hinge-loss that takes into account
the number of classes within each hierarchy and the relationship be-
tween each other in the label tree, we moderate the contribution of
each hierarchical level to the loss. We do this by dynamically ad-
justing the loss-weights. This improves performance while balancing
the contribution of each of the hierarchical levels making use of the
classification error. It is also worth noting that our H-CapsNet employs
a dynamic routing algorithm [8] between capsules for each hierarchical
branch. Nonetheless, our architecture is quite general with respect to
the routing scheme used and, therefore, other alternatives elsewhere in
the literature may be used instead. We have shown results on widely
available datasets and compared these against alternatives elsewhere
in the literature. We have also performed an ablation study. Further,
throughout our experiments we have presented results using both tree-
based and DAG-based hierarchical label structures. Our experiments
show that our H-CapsNet delivers a margin of advantage over the
alternatives.
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